Architecture of Complexity

Peng Shao
What I learned from Simon’s writing.

One thing I learned right off the bat is that on page 184 Simon describes that “given the properties of the parts [of a complex system] and the laws of their interaction, it is not a trivial matter to infer the properties of the whole.” This can also be found in the parable of Hora and Tempus – while they both made the same watches with the same number of parts, and Hora needed to make many more times as many complete assemblies per watch as Tempus, Tempus had to make a very high number of attempts per completed assembly as Hora. Hence, Hora became successful at delivering many watches and Tempus did not.

The other thing I also found on that page, “Hierarchy, I shall argue, is one of the central structural schemes that the architect of complexity uses.” To illustrate this suggestion, Simon draws upon examples in physics, biology, and sociology. For instance, Simon describes the evolution of multi-cellular organisms as a hierarchic structure produced by assembly or by specialization. Simon insists that near decomposability – in which the interactions between subsystems are “weak but not negligible” (page 197) – is a necessary criterion for efficiency, and hence, rapid evolution.
These concepts are important because …
For software engineers, these concepts are paramount in solving a wide stroke of problems: project management is the biggest one that comes to mind, but other problems include code segmentation, software engineering process, verification and validation, requirements segmentation, traceability, and their interactions. There is a visible hierarchy in those elements described above: for example, interactions between requirements and testing. There exists also a subsystem within each of them: for example, testing consists of its own management issues, individual specifications, configuration management, etc. Applying what Simon suggests in this chapter – hierarchical systems with near decomposability – can simplify descriptions of the whole system and its subcomponents. Drawing from examples in nature and in engineering, I feel that successful management of hierarchic structure is crucial to building and maintaining complex systems.
Relevant?
Sure. In our research we observe the interactions between a biologist and computer scientist. For instance, the biologist wants to solve a forensic DNA problem but needs some sort of scientific 3D visualization comparing multiple DNA strings. In our pilot, we have probed the extremes to which a computer scientist can allow the biologist to get involved in building the visualization. We have found, in very preliminary observations that a biologist cannot get too involved in a computer scientist’s job and vice versa: the test biologist subject balked at the notion of editing Python code. This, to me, is an example of poor decomposability. It goes back to Simon’s example of the human digestive system: the mouth, esophagus, stomach, and intestinal tract are all specialized and perform relatively different tasks that are not highly interactive. Their interactions come mainly from net inputs and outputs from the respective subsystems.
What do other researchers think?

From Hierarchy and History in Simon’s “Architecture of Complexity” by Dr. Philip Agre from UCLA, appearing in the Journal of the Learning Sciences in December 2003.

Agre notes that even though Simon’s effort focuses on the “sciences of the artificial” his approaches are profoundly natural. Agre points out that Simon is not limiting his description of hierarchical structures to particular complex structures but to complexity in general. This, indeed, is an attempt at profundity. That Agre suggests Simon generalizes the watchmaker’s parable of modularity to that of God’s design, particularly of biological structure and evolution. Agre examines how far the story can be generalized and concludes that the idea of hierarchy in nature is a more diverse phenomenon than described in Simon’s idealized theory.
