Andy Hoffner

1. One of the most interesting arguments I think Simon makes is that hierarchical systems evolve and grow much more rapidly than non-hierarchical systems. He argues that by building a system from a set of smaller discernable components is far more stable than one constructed in as a single conglomerate. In biology, systems that grow and evolve from simpler sets are far more efficient – that is, as organisms are unsuccessful, they fall die off while their predecessors are free to mutate again, or other concurrent variations of the organism will thrive instead.

This also relates to Simons second point, of near decomposability. He argues that hierarchies have a near decomposability, where ‘intracomponent linkages’ are generally stronger than ‘intercomponent linkages,’ meaning that the smaller items that make up a set are more strongly dependant on one another than those in a set of these sets. One of his examples describes how any given organ in your body is oblivious to the specifics of what other organs are doing – it only concerns itself with their outward effects on the body.

2. It is important that we recognize how nearly decomposable hierarchical systems can provide our business and engineering models the expandability and function of natural hierarchical systems. By building software into a set of small, reusable modules, you can vastly decrease the amount of time it takes to code. Some small examples of this can already be found. The program Automator, for example, provides a set of bundled scripting actions, which can be laid out one after another in a long hierarchical list of execution. Each bundle performs a task, and passes any relevant data to the next task, building and refining the data until it reaches a final form. If there were tools like this for other programming projects, it could help you construct a project, at least in part, from an established set of frequently used code, making the final project more extensible, and more revisable.

3. There are many times at work the specifications of a project change after the code has been written. Depending on how your code is written, the changes could snowball a large chain of re-writes. If you built the code in segments, where one depends upon the other, it can be easier to make changes later. If a piece isn’t up to the new specs, it alone can be rewritten, instead of the whole project.

4. Paul Cillars of the University of Stellenbosch, while recognizing the importance of hierarchical structures, also communicated several problems associated with pure hierarchical structuring, and emphasizes the need for flexibility and innovation. He simply states that successful hierarchies must be transformable, that they must mold to the context in which remains meaningful. He points out that, in a business context, managers don’t usually recognize this, and treat new interpretations of structure as threats to ‘efficient management’ rather than routes of communication

