
Cognitive and Social Support

for Learning Java API

Yunwen Ye

April 24, 2006

University of Colorado at Boulder

Guest Lecture at Design, Learning and Collaboration

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

I have a dream…

In 1983, 85% of the code has been repeated by someone else
in the world. (Capers Jones, 1984)

Every time when I am trying to re-invent
the wheel, an agent brings me the existing
wheel that I can use immediately

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

I have yet another dream…

All the information I need is always at my
desktop, virtual or real; and the needed
information only

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Software reuse

Definition
Creating new software systems with existing artifacts

Reusable artifacts
Code artifacts

macros, functions, methods, classes, subsystems,
systems (Open Source Software)

Non-code artifacts

analyses, designs, test plans and cases, domain models

Knowledge

program idioms, program plans, design patterns, software
architecture styles, domain knowledge

Reuse repository systems
Supporting reuse activities

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Why reuse?

Increased productivity

Reduced development time

Reduced cognitive load

Reduced testing time

Increased quality

Fewer bugs

Enhanced evolvability and maintainability

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Reuse process (sLCMS)

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Understanding the cognitive issues in

reuse

Cognitive engineering:

Apply what is known from cognitive science to
the design and construction of tools that
assists cognitive activities of human beings

Bridge two gulfs between users and tools

evaluation

execution

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Execution gulf

Bridging the gap from the goal to the tool

Intention Formation

Users decide to do something with an internal
specification of the task created from their goal.

Action Specification

Users externalize the internal specification into a
sequence of specified actions.

Action Execution

The actions are executed with the tool.

evaluation

execution

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Evaluation gulf

Bridging the gap from tool output to goal

System Perception

Users perceive the output of the tool.

Interpretation

Users interpret the perceived output.

Evaluation

Users compare the interpretation with the original
goal.

Evaluation

Execution

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

A cognitive model of reuse

repository

retrieved compsreuse queries

Retrieval by Reformulation

reuse intentions chosen comps

Development

Environment

integrate

chooseformulate

form

retrieve

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

A cognitive model of reuse

repository

retrieved compsreuse queries

Retrieval by Reformulation

System model
of repository

Existence of components

reuse intentions chosen comps

Development

Environment

integrate

chooseformulate

form

retrieve

No attempt to
reuse

Vocabulary
mismatch

Unable to
understand the

components

Unable to use in
the current

context

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Research problems

No attempt to reuse (Location)
Information islands

Not aware of the existence of reusable components

Perceived low reuse utility (benefits/cost)
High cost of locating components

Unable to locate the component (Location)
Situation model vs. system model

Unable to use the component
(Comprehension)

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

User’s knowledge about a reuse
repository

L3:
Belief

L4:
System Model

L2: Vaguely
Known

L1: Well
Known

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Growth of Java class library

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Functionality of development tools

Features

time

Cognitive capability

Cognitive friction point

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Libraries used in STeP_IN

Library Name Class Method

activation.jar 38 261

bcel-5.1.jar 373 3093

commons-collections-3.1.jar 446 4021

commons-dbcp-1.2.1.jar 44 935

commons-pool-1.2.jar 25 277

jun547.jar 2640 18412

mail.jar 240 1966

postgresql.jar 82 1216

resolver.jar 29 298

StPL75.jar 175 1384

xercesImpl.jar 784 7463

xml-ParserAPIs.jar 207 1748

Total 5083 41074

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

No attempt to reuse

No attempt to reuse is the most significant
barrier to reuse (Frakes & Fox, 1996)

32

22 21
19 18

12

7

0

5

10

15

20

25

30

35

No Attempt Not

Integratable

Not

Understood

Not Valid Not Exist Not Found Not

Available

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Proposed solution

Active component repository systems
Overcoming the limits of browsing and searching

Supporting information delivery

Benefits
Reusing unknown components

Reduced locating cost

Seamless integration with programming environment

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Challenges in active reuse repository

systems

L3:
Belief

L4:
System Model

L2: Vaguely
Known

Task-relevant
information

L1: Well
Known

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

CodeBroker

Editing space

Example

Delivery buffer

Illustrator

ListenerListener

Presenter

Fetcher

R
e
p

o
s
it

o
r
y

inferred queries

retrieved components

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

CodeBroker: An active reuse repository system

Editing space

Delivery buffer

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

CodeBroker: An active reuse repository system

Editing space

Delivery buffer

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

CodeBroker: An active reuse repository system

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Editing space

Example

Delivery buffer

CodeBroker: An active reuse repository system

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Inferring the task

Plan recognition
Actions Inferred goal Suggested actions or
information

Similarity analysis

Current situation

 needs

similar

Information XSituation A

 probably needs

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Similarity analysis in CodeBroker

Create a random number
between two limits

int <- int x int

Generate a random number
using the default generator

int <- int x int

Signature
Matching

Information
Retrieval

Current situation

Situation A

Fetcher

Listener

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

The rationale

Three aspects of a program
Concept

The functionality of the program

Semantic information

Revealed in comments, identifiers, …

Constraint

Execution environment

Syntactic information

Revealed in signatures, protocols, …

Code

The implementation

The assumption
Similar concept + compatible signature reusable code

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Basic information retrieval (IR) techniques

Information retrieval: Finding similar documents based on
the commonality of terms

Documents and queries are represented by term vectors

Dj = (f1, j, f2, j, ..., fN, j)

Similarity is the distance between two vectors

Similarity(Q,D) = Q[i] D[i]
i=1

n

Q[i]2

i=1

n

D[i]2

i=1

n

0.37(1 0 2 0 0 1 0)factor help help retrievalD3

0.55(0 1 0 0 1 2 0)information operation retrieval retrievalD2

7/750.5=0.80(3 0 0 2 0 1 1)factor factor factor human human retrieval
system

D1

(1 1 0 1 0 1 1)human factors in information retrieval
system

Q

SimilarityVectorContents

Term space: (factor information help human operation retrieval system)

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

LSA: Improved IR

Latent semantic analysis

Addressing the vocabulary mismatch problem (people use
different names to refer to the same concept)

Creating a semantic space with a large amount of documents

Reducing the singular vectors

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Probabilistic IR model

Adding weights to each term

Dj = (t1, j , t2, j, ..., tN, j)

ti,j = TRWi * fi,j

Term Relevance Weight

TRWi = log (pi x (1-qi) / qi x (1-pi))

 pi Probability of the term appearing in relevant documents

 qi Probability of the term appearing in irrelevant documents

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Weighting schema in CodeBroker

 N is the number of components

ni is the number of components whose documents contain the term ti
T is the number of terms in the component collection
tfi,j is the frequency of term ti in the document of the component Dj
qtfi is the frequency of term ti in the query Q

= +

+

+

+

+

+
=

T

i i

i

ji

ji

i

i
j

qtfk

qtfk

tfK

tfk

n

nN
DQsim

1 3

3

,

,1)1()1(
)

5.0

5.0
(log),(

avdldlbbkK j+=)1((1

k1,k3,b are empirically determined parameters depending on the
nature of the document collection. In CodeBroker, k1 is set
to 1.2, k3 to 1.0, and b to 0.75.

dlj is the length of document Dj

avdl is the average length of all documents in the collection

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Signature matching determines the

constraint compatibility

Reusable components must be compatible in
signature

Signature is the syntactic interface of a module (method
and class)

Improving the precision of retrieval

Method level match

Exact match

Type1 x Type2 -> Type3

TypeA x TypeB -> TypeC

<=> Type1=TypeA AND Type2=TypeB AND Type3=TypeC

Relaxed match

Generalization / Specialization / Reorder
string x int -> int matches (relaxed) long x string -> long

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Presenter: tailoring the delivery to

larger context and user

L3L2 L1

L4: Component
 RepositoryListener

Fetcher

inferred queries

Discourse model: list of
components from uninterested
domains

User model: list of
components known to
the user

Presenter

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Discourse models: Improving task-

relevance

Discourse models capture the larger
context of programming activities

Representing the interaction history
between programmers and CodeBroker

Removing irrelevant components

Negative discourse models: specifying
what is not of interest to programmers

Example:

((“java.util.zip”) ;; a package

(“java.awt” (“CardLayout”))) ;; a

class

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

User models: User-specific delivery

User models represent programmers’
knowledge on the component repository

A list of known components

Example:
 ((“java.applet” (“Applet” (“getParameterInfo”))

 (“java.io” (“File” (“exists”

 “11/02/00” “11/10/00”

“11/11/00”)

 (“isAbsolute”

 “11/01/00” “11/10/00”

 “11/11/00”))))

Components contained in user models are not
delivered

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Incremental discourse modeling
and user modeling

Added to discourse model

Added to user models

Initial user models
Created by analyzing existing user programs

Adaptive user models
CodeBroker updates user models automatically when
it detects the use of a component in the editor

Adaptable user models and discourse models
Using the Skip Components Menu associated with
each delivered component

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Models in CodeBroker

UM

Existing

programs

Component Repository

TM

DM

TMTM

DM

UM

UM

DM

UM

Session 1 Session 2

Task 2Task 1 Task 1

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Retrieval-by-reformulation

A process for software developers to
incrementally develop reuse queries

Delivered components help developers become
familiar with the vocabulary and structure of the
repository

Change the way of writing the query

Limit the search scope by specifying (un)interested
packages and classes

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

The cycle of

delivery-browsing-searching

Delivered components are results of
information reconnaissance

Possible actions after the delivery

The needed component is delivered
 Choose the needed one through browsing

Too many components are delivered
 Filter the delivered components

The needed one is not delivered
 Search again through retrieval-by-

reformulation

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Evaluation experiments

Experiment goals:

Observe the effectiveness of CodeBroker in
encouraging programmers to reuse

Analyze the effectiveness of task inference, discourse
models, and user models

12 experiments with 5 subjects

Implementing an assigned task with CodeBroker

10+10+85-63-4Years of prog. in general

4

S1

7107-87Java skill (self-evaluation)

S5S4S3S2Subjects

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

System assessment

811092057Sum

00000512

20011411
S5

20011310

0030349
S4

0000038

1021347

1011256

S3

1120355

0001144

0001173

S2

1001132

00224101
S1

vaguely
known

(L2)

anticipated
but unknown

(L3)

unanticipated
(L4-L3)

triggered

breakdown of deliveries

deliveredtotalNoSub

The STeP_IN system: a

SocioTechnical Platform

for in situ Networking

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Three proximities for knowledge

collaboration

Cognitive proximity

Defines the transferability and combinability of
knowledge

Structural proximity

Provides communication channels for
knowledge to flow

Relational proximity

Determines the motivation to participate in
knowledge collaboration

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Dynamic community

A dynamic community is a small group of
knowledge workers that forms ad hoc in
support of a particular user working on a
particular task, and dissembles as the task
is finished

Dynamic communities support situated
knowledge collaboration by mobilizing
positive forces in all three proximities

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Knowledge Work Space

A

B

C

D

E

M

N

O

P

Q

Set of people ={A, B, C, D, E, M, N, O, P, Q}
Set of information ={ , , , , , , , }

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Knowledge Work Space

Relation between information
II = { (,), (,), (,), (,), (,), (,)}

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Knowledge Work Space

Relation between people and information
PI = { (B,), (C,), (M,), (B,), (D,), (E,),

(N,), (D,), (P,), (O,), (Q,), (Q,)}

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Knowledge Work Space

Relation between people
PP={ (A, B), (A, C), (A, D), (A, E), (A, O), (A, P),
 (D, O), (E, N), (E, Q), (M, P), (M, N), (O, Q)}

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Knowledge Work Space

A

B

C

D

E

M

N

O

P

Q

KWS= ({(,), (,), (,), (,), (,), (,)}
{(B,), (C,), (M,), (B,), (D,), (E,), (N,), (D,), (P,), (O,), (Q,), (Q,)}
{(A,B), (A,C), (A,D), (A,E), (A,O), (A,P), (D,O), (E,N), (E,Q), (M,P), (M,N), (O,Q)}

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

The forming process of a DynC

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Triggering event for Dync(A,)

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

From information to information

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

From information to people (experts)

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

From people to people

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Dync(A,) {A, B, C, D, E}

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Dync(A,) {A, B, C, D, E}

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

M
em

b
er-sp

ecific

Task-specific and member-specific

DynC(N,) = {E, N, M}

A

B

C

D

E

M

N

O

P

Q

Task-specific

DynC(A,) = {A, B, C, D, P}

A

B

C

D

E

M

N

O

P

Q

DynC(A,) = {A, B, C, D, E}

A

B

C

D

E

M

N

O

P

Q

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

user & info

DynC formation support subsystem

D
y
n

a
m

ic
 C

o
m

m
u

n
ity

 F
o

rm
a
tio

n

identifying experts

selecting experts

locate relevant info

relevant info

C EDB M N
expert list

C EDB

dync members

information repository

relation between info

relation between info & people

relation between people

A

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

STeP_IN: programming with

external knowledge resources

Individualized search for API methods

Accumulating and showing use examples

Getting help from peers (a DynC
approach)

Who are the experts?

Experts can only be identified after task is known

Who is willing to help?

Utilizing existing social relations

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Technical Profile initialization

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Social Profile Initialization

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search

Individualized search

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search results

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search engine for Java programs

generate random numbers

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search engine for Java programs

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search engine for Java programs

Specifying packages or classes not to search

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search engine for Java programs

-org.apache.commons.math.random.EmpiricalDistributi

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search engine for Java programs

Specifying packages or classes to search

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search engine for Java programs

+org.apache.commons.math.random.EmpiricalDistributi

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Search engine for Java programs

Specifying packages at any hierarchical level

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Extended Java API documents

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Examples

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Ask the experts

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Mail sent to selected experts

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Reply from experts

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

DynC evaluation

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Discussion archive

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

DynC formation

Expert identification

Expert selection

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Identifying experts

Expert is a relative attribute

Only after a question is known, experts can be
identified

Creating user profiles by analyzing
programs they have developed

Software developers who have used the
method of interest are candidate experts

Links from methods to software developers

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Expert selection

Level1: Confirmed expertise

Level2: Claimed expertise

Level3: Inferred expertise

Level4: Future expertise

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Expert identification

Level1: confirmed expertise

Send email to DynC #6

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Expert identification

 Level2: claimed expertise

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Expert identification

Level3: inferred expertise

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Selecting experts

From expert candidates, select those who
are most likely to help

Those I have helped recently

Those I have interacted through emails

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Selecting experts

4 relations

help<A,B,t>
friend<A,B>
exclude<A,B>
email<A,B>

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Selecting experts

4 relations

help<A,B,t>
friend<A,B>
exclude<A,B>
email<A,B>

 A (m-asada) participated in a DynC initiated

by B (nisinaka) at time t

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Selecting experts

4 relations

help<A,B,t>

friend<A,B>
exclude<A,B>
email<A,B>

 A (m-asada) delcares that he will always participate

in B (nisinaka)’s DynC in the future

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Selecting experts

4 relations

help<A,B,t>
friend<A,B>

exclude<A,B>
email<A,B>

 A (m-asada) delcares that he will never participate

inB (yxy)’s DynC in the future

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Selecting experts

4 relations

help<A,B,t>
friend<A,B>
exclude<A,B>

email<A,B>

 The number of emails that A (nisinaka)

has sent to B (m-asada)

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Selecting experts based on 4

relations
For each person X in identified expert lists

1. If exclude<X, A>, X is removed from the list

because X declared he will never participate in A’s DynC

2. If friend<X, A>, X is selected

 because X declared he will always participated in A’s DynC

3. If |help<A, X, t>| > |help<X, A, t>|, X is selected

because A has helped X more times than X did A

4. If help<A, X, t> and t is more recent than help<X, A, t>, X
is selected

because A has recently helped X

5. Selecting from remaining experts on the order of email<X,
A>

because X should have known A well if X has send many emails
to A

6. Selecting from remaining experts those who got most help
by other members

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Social awareness communication

Acknowledging publicly member
participation to motivate

When experts response, members of the DynC
know

Top contributors list

Avoiding forced collaboration

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Avoiding forced collaboration

When request for help is sent to experts,
recipients are hidden from requesters and other
experts

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Avoiding forced collaboration

Selected experts can quietly withdraw from the
DynC without anyone noticing

Notifying the formation

of a new DynC

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Avoiding forced collaboration

Selected experts can quietly withdraw from the
DynC without anyone noticing

Notifying the formation

of a new DynC

Leave the current DynC

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Avoiding forced collaboration

Selected experts can quietly withdraw from the
DynC without anyone noticing

Notifying the formation

of a new DynC

Decline future participation in his/her DynC

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Avoiding forced collaboration

Selected experts can quietly withdraw from the
DynC without anyone noticing

Notifying the formation

of a new DynC

Decline future participation of DynC

on an API component

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Social awareness communication

Sending emails to ask the experts

Providing excuse space

A dose not know who are the recipients

Publicly acknowledgement

Any experts who answered the questions are made
known

Easy exit

“Don’t bother me anymore about this problem”

“I don’t want to have more request emails from
A”—establishing exclude<X, A>

©
 2

0
0

6
 Y

u
n

w
en

 Y
e

Summary

Better understanding of cognitive
difficulties of component reuse

Unknown components

Low reuse utility

A new type of component repository
systems

Active component repository systems

Integrating technology support with
social support

