
The Challenges in Creating Tools for Improving the
Software Development Lifecycle

 Susan L. Spraragen
 IBM Watson Research Center

 Hawthorne, NY 10532
+1 914 784 7194

sprara@us.ibm.com

ABSTRACT
Creating successful software systems for end user applications is
a complex task. It is often proposed that tools can be built for
development teams to help them do their job more efficiently and
to help them communicate with their team members. The success
of these tools relies on how well the technical community that
builds software tools understands the needs of the technical
community that uses these tools. How can we effectively apply a
user centered design approach to building these tools?

General Terms
Design, Human Factors

Keywords
User Centered Design, Communication, Software Development

1. INTRODUCTION
When we develop applications with the end user in mind, we
consider the tasks they need to perform. Some end user tasks are
rather straightforward: making an online hotel reservation,
logging onto a system to check mail, conducting a preflight
checklist, preparing a monthly revenue report. These tasks have
an order associated with them; they have a start point, a middle,
and end point. Their outcomes are rather well defined. When we
develop software tools for developers, their tasks are more fluid:
modeling the data terms that flow across multiple systems,
building pervasive applications, creating a web service. These
tasks are not so orderly nor are their end results so predictable.
Enabling and improving the productivity for these complex tasks
requires a thoughtful design practice.

2. AN APPROACH
My position on just how to create useful tools for improving the
software development lifecycle and for improving the end product
begins with considering users as participants. It is imperative to
engage in discussions, interviews, and observations with our
partnering technical community, in order to gain a better

perspective about their work, where they spend the most time, and
how the costliest mistakes are made. Then once we have an
understanding of their domain, we can address how to improve
their productivity. Much has been written about participatory
design practices [4, 7], and here I site an actual case where these
methodologies proved to be successful.

Considering an example of the importance of clear
communication, we developed a data modeling tool that was
designed to capture the knowledge of subject matter experts in a
manner that would be useful for developers to immediately grasp.
Often IT architects or database administrators collect the data
requirements and hand them off to the developer in any number of
formats. We wanted to provide them with a method for creating
an XML Schema from their data dictionaries, without having the
concern of writing the syntactically correct schema themselves.
We also wanted to see whether this tool could be an effective

To achieve success in these engagements requires gaining an
appreciation for how the teams work and interact amongst
themselves and across their organization. There are many steps in
the software lifecycle process, often designated to various team
members across various geographies who may not share a
common mindset about the project [3]. If we create tools to
improve the development lifecycle, then one feature of the tool
should aid in the coordination of activities amongst different
functional areas of the project.
 At the same time, as we, the tool providers, interact with a
similar but different technical community, we need to encourage
developers to communicate with us effectively. It is wise to
consider possible sources of hesitancy one may encounter. It is
valuable to provide some guidance or outline to these discussions
so real problems can be revealed. One way to engage in such
discussions is to have developers focus on the areas that they own
[1]. Alternatively we may take a topic such as data flow and learn
from each team member how they need to deal with that piece. As
such, during this walk-through, usability practitioners have an
opportunity to interject questions about how to make
improvements and to ask developers how their end user
population will also be interacting with the data.
These communications are important to continue throughout the
development of the tool, to ensure that we translated their needs
into features that they find to be useful. It also serves as a terrific
means for prioritizing the many features that could be added to
the tool but that may not actually be needed. This gives us some
valuable, concrete validation of the approach and premise for the
tool.

3. AN EXAMPLE

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage, and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.

Human and Social Factors of Software Engineering (HSSE) May 16, 2005, St.
Louis, Missouri, USA
Copyright 2005 ACM ISBN # 1-59593-120-1/05/05

1

means of communication during the requirements gathering stage
[6].
Data managers and IT architects need to communicate with their
colleagues during the course of a project. The usefulness of a
data modeling tool goes beyond what we provide just for them.
Our tool provides a basic image that describes the data
relationships, and in addition to XML schema, we supply HTML
output describing the data that can easily be viewed in any
browser. With this variety of outputs, their work becomes more
accessible to others. Thus the team members can achieve more of
a common ground for determining and pursuing shared goals of
the project, even when they don’t physically work side by side.
Once we had a prototype, we needed better focus and validation,
so I attended a conference for data management experts. I began
to understand how they gather requirements, interview subject
matter experts, and how they work within the constraints of their
organization when trying to communicate with various
stakeholders. It was there where I found our participant, and
where I heard that the most time consuming aspect of gathering
requirements is in gaining consensus on the data. So as we were
trying to advance the usefulness of our data modeling tool, I
quickly realized that this was a real issue our tool could address.
Many other issues arose as we began working with our
participant, which mapped into the features of our modeling tool.
This work requires the developers of the tool, to step back from
their technology, and think about how to present useful features to
a different technical community.
Along with engaging with a participant, we established some
basic design principles:

1. We proposed a lightweight tool, with minimal training
required, that could be used immediately to provide
some spark to the development process.

2. We made concerted efforts to lower the barrier of entry
by using simple interaction techniques, and terms that
were generally familiar. With a basic table layout and
context centered graphics, our participant could see the
data dictionary under construction and how the terms
related to each other.

3. We made efforts not to restrict or interrupt the flow of
thought. Simple considerations, such as limiting
unnecessary mouse movements kept the user’s focus in
one area.

The tool needs to support the developer’s work style without over
imposing on the work they need to do. Placing the fulcrum for
balancing between providing helpful guidelines or wizards, and
cramping the open style and fluidity of how someone actually
works, and needs to communicate about their work, takes finesse.
Software architecture has been compared to building architecture
in terms of how these fields may share participatory design
practices [2, 5]. Here too, for this data management project, we
became building architects, in a sense. We had to survey the
property, see how to position our structure, size and place the
doors and windows, while providing a strong roof and foundation
that would hold all the pieces together. Each step of this process
includes the participation with the inhabitants of this structure.
We were fortunate to observe how well one person lived within
this environment we created with our data modeling tool, but we

have yet to see, more completely, how well it can accommodate
others on the team.

3.1 Building the next tool
How can the experiences from this project extend to a larger team
that wants to build a tool for developers, not data managers? Here
we have a group of researchers creating something that should be
useful for another technical community, this time a group of
developers. This set of users have the complex job of building
pervasive applications that need to work on different types of
devices and that need to communicate with different types of
servers. The requirements, protocols, device dependency issues,
and data issues make for a complex development scenario.
The research team developing the tool already has leanings
towards how developers work, as they perform similar tasks
themselves, as programmers. So it is likely that a programmer,
who is developing the tool, could offer any of the following
remarks: “Well, this is how I would do it!” or “I can imagine
someone doing it this way…” or “We can ask our friends what
they think about this approach.” The common piece missing from
these falsehoods is the connection with the actual user of the tool.
This is where the need for a usability focus becomes clear.
One role of a usability expert is to forge an ongoing relationship
between these two communities. For the initial phase of creating
a useful tool, we can validate research notions through interviews,
user studies, and observations made with the targeted community.
However, translating those findings in a timely, credible and
useful manner is tricky. Later on when there is a prototype, the
value of these kinds of exercises becomes more apparent. But in
the early stages, the usability role becomes more of an
ambassador role where we present the two communities with
opportunities to get to know each other. Through interviews and
joint discussions, we may find a person who currently develops
pervasive applications and would serve as a participant
throughout the course of the project. As these communities have
geographic, stylistic, and work requirements that are divergent,
making this match is a formidable challenge – but a necessary one
to meet.
Care must be taken here while working with a prospective user
who provides guidance for improving the tool. The research team
needs to balance what may be identified as an important feature
from the user perspective with features that will also serve a
broader community of developers. As researchers, we are driven
to be forward thinking and as such we need to do more than
improve the developer’s existing work practices. So by
combining efforts made by quizzical researchers, with the
thoughtful considerations provided by usability experts, with the
practical suggestions supplied by our end users – we may very
well have a productive and proactive merging of the minds - all
uniquely contributing to the creation of a useful and useable tool.

4. CONCLUSIONS
Understanding how and when to apply usability techniques and
findings to a project is not always obvious. We, in the human
factors community, want to be a valuable and positive part of the
development process and we need to understand and be aware of
a variety of technical communities and concerns.
In these examples, the users in both these tooling projects are
neither novices nor beginners. They are rather sophisticated in

2

their work, and what we provide them has to respect that
sophistication. This is true not only for what we deliver as the
end product but for how we progress throughout the evolution of
the tool.

5. ACKNOWLEDGEMENTS
Thanks to Douglas Lovell who implemented the data modeling
tool sited in this paper and who expressed a clear understanding
of the role of a usability expert on a development team. In
addition, I extend my appreciation to Danny Soroker for asking
questions that motivate my position and for reviewing this paper.

I have been designing and implementing software systems in the
forms of kiosks, web applications, and data modeling tools for
fifteen years at the IBM TJ Watson Research Center. Here I have
combined notions of psychology, programming techniques, user
interface techniques with ethnographic observations in order to
create useful and useable systems.

6. REFERENCES
[1] Beyer, Hugh and Holtzblatt, Karen. Contextual Design;

Defining Customer-Centered Systems, Morgan Kaufman
Publishers, San Francisco CA, 1998.

[2] Brooks, F.P., The Mythical Man-Month, Addison-Wesley,
New York, 1995.

[3] Cohen, Cynthia F., Birkin, Stanley J., Garfield, Monica, and
Webb, Harold W., Managing Conflict In Software Testing,
Communications of the ACM, 47, 1, (Jan. 2004), 76-81.

[4] O’Neill, E., Johnson, P. Participatory Task Modelling: users
and developers modeling users’ tasks and domains,
TAMODIA ’04, (Nov. 2004), 67-74.

[5] Rank, S., O’Coill, C., Boldyreff, C., Doughty, M. Software,
Architecture, and Participatory Design, WISER ’04, (Nov.
2004), 45-48.

[6] Spraragen, Susan L. and Lovell, Douglas. Document models
and XML Vocabulary Building for Business Users,
Proceedings of the 2004 XML Conference, IDEAlliance,
2004.

[7] Winograd, Terry. From Programming Environments to
Environments for Designing, Communications of the ACM,
38,6, (June 1995), 65-74.

3

	INTRODUCTION
	AN APPROACH
	AN EXAMPLE
	3.1 Building the next tool
	4. CONCLUSIONS
	5. ACKNOWLEDGEMENTS
	6. REFERENCES

