
Taking this view helps to clar-
ify differences in the assumptions
that underpin the major types of
EUD tools. It also helps tran-
scend the simplistic assumption
that end-user developers are excel-
lent domain experts who start
from scratch in terms of develop-
ment knowledge and skills. In
fact, as the accompanying figure
illustrates, expertise tension exists

in a two-dimensional continuum
of job-related domain knowledge
and system-related development
knowledge. Different EUD prac-
tices and tools apply depending
on the direction and level of
(lacking) expertise.

Lacking systems knowledge. If
we want to enable domain
experts to modify or extend soft-
ware without having a deep

understanding of a computer
system or coding skills, then
expertise tension is in the direc-
tion of system knowledge.

The arrow in the figure
labeled “Easy DevTools” stands
for enabling users to act as IT
experts by offering simplified
software development environ-
ments. For example, Web-page
builder, ad hoc workflow sys-
tems, or simulation packages are
initially generic development
tools. To enable end users to use
that tool, the tools must be sim-
plified by either optimizing the
usability or by offering higher-
level modeling primitives with
limited options still not special-
ized to any domain, but encap-
sulating low-level technical
aspects of the underlying tech-
nology.

To further support the
domain expert, such generic
development environments can
also be specialized to a specific

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 39

Designing tools for end users takes an understanding—
and appreciation—of various levels of knowledge
(or lack thereof).

By Joerg Beringer

As an explicit design topic, end-user develop-
ment (EUD) is rather new to human-computer
interaction (HCI), although it is implicitly embed-
ded in many design projects. What makes EUD dif-
ferent from other HCI topics is that in traditional
HCI terms, users are experts in their tasks, and good
tools should match these tasks. Conversely, end-user
developers are trying to complete develop-
ment tasks in which, by definition, they are not
experts. Therefore, the dominating design goal of
EUD tools is to compensate for a discrepancy
between the user’s expertise and the development
task to be performed.

REDUCING
EXPERTISE TENSION

40 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

task domain, for example, modeling factory produc-
tion. Here, the design challenge is both to hide any
system-related details or technical constraints and to
offer a high-level semantic language in which con-
structs directly reflect the entities and actions within
the target domain; for example, factory production
allows users to modify or
extend the system by compos-
ing semantic entities they are
familiar with. This is the idea
behind domain-oriented design
environments (DODEs) [1].
The “High-Level Semantics”
arrow illustrates how domain
experts are shifted closer to the
direction of IT experts.

Lacking job domain knowl-
edge. If we want to enable a
user to complete a develop-
ment task for which he or she
does not have appropriate
domain knowledge—for
example, a manager setting up
a collaboration room or a pur-
chaser setting up a supply
chain—then the development tool must offer more
guidance. In addition to high-level semantic entities,
such development tools must provide “best practice”
advice and domain know-how in order to help the
user understand key concepts and offer executional
guidance.

In the collaboration room example, the configura-
tion environment provides several ready-to-use tem-
plates for different work group types with different
collaboration requirements. In a similar manner, the
system can help the purchaser understand the basics
about supply chain management and provides best
practice guidance.

Overcoming the expertise tension on this dimen-
sion focuses on compensating for a lack of specific
domain expertise. The design response to this tension
is a well-designed configuration environment offering
best practice templates and high-level semantic build-
ing blocks, as well as encapsulating domain knowl-
edge by means of rules or ontologies. If appropriate,
the entire development tool could be based on
metaphors building on knowledge out of another
well-known domain.

Reducing Expertise Tension
Depending on the dimension and level of expertise,
some approaches seem to crystallize as principles to
deal with expertise tension:

Intelligent systems have a built-in domain or system
knowledge to guide users and cooperatively help the

user to act.
High-level semantic build-

ing blocks enable users to cre-
ate new things by composing
familiar domain specific enti-
ties. Such applications usu-
ally do not generalize across
different domains but are
specialized solutions for a
well-defined task domain.

Easy development tools pro-
vide end-user design times
that come with a simplified
function set, higher-level
primitives, direct manipula-
tion, WYSIWYG, or logical
user interfaces that encapsu-

late system-oriented low-level details.
Metaphors use a replacement domain model to

enable the user to act without having any domain
knowledge.

Wizards have built-in rules and sequences to guide
the user’s task or interaction flow. They compensate for
insufficient knowledge to plan actions or understand
all the dependencies of options. This may be on the
dimension of IT knowledge (configuring a firewall) or
on the dimension of a task domain (booking a flight).

With this 2D-model of expertise tension in mind
and the various design options identified, future
research must further investigate which approach best
applies to what type of tension.

Reference
1. Fischer, G. Domain-oriented design environments. Automated Software

Engineering—The International Journal of Automated Reasoning and
Artificial Intelligence in Software Engineering 1, 2 (June 1994), 177–203.

Joerg Beringer (joerg.beringer@sap.com) is a managing product
designer at SAP–AG, Walldorf, Germany, specializing in xApps and
composite application framework.

© 2004 ACM 0001-0782/04/0900 $5.00

c

The dominating design goal of EUD tools is to compensate for a discrepancy
between the user’s expertise and the development task to be performed.

Intelligent
Systems

Domain
Expert

IT Expert

S
ys

te
m

s
K

no
w

le
dg

e

Domain Knowledge

High

HighLow

Metap
hors

H
ig

h-
L

ev
el

S
em

an
ti

cs

E
as

y
D

ev
To

o
ls

The continuum of expertise
tension.

