
Here, we describe how to
facilitate EUD [4] by employing
an agent-based approach as a
means to create domain-oriented
design environments (DODEs).
We present two examples using
the AgentSheets substrate:

Domain-oriented languages.
Domain-oriented end-user pro-
gramming languages are used to
define the behavior of agents; for
example, creating speech-based
Web interfaces that pragmati-
cally analyze and summarize
information.

Domain-oriented agents.
Agents can be used like building
blocks in domain-oriented con-
struction kits; for example, using
agent-based design environ-
ments to allow people to learn
about bridge design.

AgentSheets initially grew from
the idea of building a new kind
of computational media that
allows casual computer users to

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 43

The idea of using agents to create adaptable
applications can help end users create complex
interactive simulations and models.

The goal of agent-based end-user development
(EUD) is to empower end users with agents they
can instruct directly. This process of instruction is
completely transparent to the user; that is, it is not
based on opaque adaptation mechanisms. Concep-
tually, the idea of instructing agents includes
what is often called end-user
programming [3] that
addresses some of the
major objections users
have toward agents,
such as the lack of
trust and the need
to train them.
However, it poses
the huge challenge
of creating devel-
opment tools suit-
able for end users
who possess no pro-
gramming background
or interest in learning how to program.

AGENT-BASED
END-USER DEVELOPMENT

By Alexander Repenning
and Andri Ioannidou

I L L U S T R A T I O N B Y H A L M A Y F O R T H

44 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

build highly parallel and interactive simulations. The
simulations are used to communicate complex ideas
or simply to serve as games. Adding a spreadsheet
paradigm to agents enables the manipulation of large
numbers of agents and their spatial organization in a
grid. Partially influenced by the spreadsheet para-
digm, agents live in an agentsheet—a grid-structured
container of agents. In contrast to spreadsheet cells
that hold text, numbers, or formulae, each
agentsheet cell contains a stack of agents. The grid
allows agents to employ implicit spatial relations (for
example, adjacency) for communicating with other
agents.

Agents in AgentSheets were designed to perceive

and act by using a rich
repertoire of multimodal
communication capabili-
ties. They can perceive
mouse and keyboard input,

sound and voice input (speech recognition), and
Web page content; they can act by moving, changing
appearance, creating new agents, playing MIDI
music, speaking (speech synthesis), playing movies,
evaluating formulae, and opening Web pages.

Agents communicate with each other in a number
of ways. They may be using spatial references
expressed as relative or absolute cell coordinates,
broadcasting without a spatial reference to agents of a
certain type, or sending messages wirelessly to agents
hosted on other computers.

Drag-and-Drop Interfaces with
End-User Programmiing
Agent behaviors are specified using a rule-based
language called Visual AgenTalk [5] (see Figure 2,
for example). Rules are composed from predefined
conditions and actions organized as methods that
include a trigger defining when and how a method
will be executed. AgentSheets users, ranging from
elementary school children to NASA scientists, cre-
ate a large number of simulations and games in a
variety of disciplines including computer science,
environmental design, fine arts, robotics, music,
and biology.

In Visual AgenTalk, language components such as
conditions, actions, rules and triggers, are
computational objects complete with user
interfaces. This enables end-user pro-
gramming using drag-and-drop interfaces
in three different ways:

Program composition. The combina-
tion of visual programming and drag-and-
drop with active feedback can support the
design and implementation of syntacti-
cally correct programs. For instance, an
animated cursor indicates to a user that an
action cannot be dropped into a condition
box. If the user is still confused, the system
can provide further explanation.

Program modification. The user inter-
face employed to wrap up language ele-
ments of an end-user programming
language must provide users with proper

guidance on how to successfully mod-
ify working programs. In many cases
this can be achieved by embedding
common user interface widgets, such
as pop-up menus, radio buttons, and
check boxes into language compo-

nents. In other cases, Visual AgenTalk utilizes custom
widgets. A direction widget, for instance, provides an
effective mechanism for an agent to refer to a relative
grid position.

Program function perception. Visual AgenTalk
enables users to play with any piece of the language.
Borrowing notions of tactile interfaces, Visual
AgenTalk allows users to perceive function through
manipulation, which results in audiovisual feedback.
Any kind of language component can be dragged
and dropped onto agents:

• Conditions: Test the condition in the context of
a specific agent. If the condition is not satisfied,
the condition will blink and the computer will
say “false.”

Figure 1. Agents arranged on
a map use speech commands
to retrieve, analyze, and
synthesize Web information
to make mountain biking
recommendations.

• Actions: Make the agent execute this action.
• Rules: Step-by-step, with visual feedback, test all

the rules provided. If there is a rule that can fire,
execute all its actions. Otherwise, indicate which
conditions are preventing the rule from firing.

DODE Applications
Agent-based EUD is a versatile approach to create
DODEs. Domain orientation aids the design
process by providing specialized building blocks
conceptually close to the problem domain. In
AgentSheets, domain-oriented building blocks exist
at two different levels:

Languages. Domain-oriented end-user program-
ming languages avoid the need to assemble function-
ality from low-level, generic, programming primitives.
Visual AgenTalk is domain-oriented through the
introduction of conditions and actions tailored to a
specific problem domain.

Agents. Ready-made agents can be arranged by an
end user to represent and simulate a design in a par-
ticular domain.

As a generic tool, AgentSheets itself is not a
DODE; however, it is used to design DODEs. The
idea of domain orientability is a form of metadesign
[1]. We illustrate the two levels of building blocks
through examples that indicate how agent-based
EUD in AgentSheets is used to create DODEs.

Domain-oriented languages—The Boulder
Mountain Biking Advisor. The lowest level of
domain orientation takes place at the end-user pro-
gramming level. For our conceptual framework, called
The Pragmatic Web [6], we have created a number of
Visual AgenTalk extensions to allow end users to
quickly create multimodal user interfaces to existing
Web-based information.

The Boulder Mountain Bike Advisor application
(Figure 1) connects real-time Web information with
speech recognition. A user who desires to go moun-
tain biking utters the word “biking” and several agents
located on a map of Boulder County react to this
voice command. These agents represent locations that
are possible candidates for biking and feature real-
time, Web-accessible weather information sensors.

Rules defined by the users (Figure 2) capture prag-
matic interpretations relevant to the users who
defined them. The first rule of the Sourdough biking
advisor agent (one of the agents that looks like a bike
in Figure 1) has a speech recognition condition that
becomes “true” if the agent hears the word “biking.”
The agent now triggers a second method, called
“check,” that includes two conditions that access a
weather station Web page to extract information such
as the current temperature and wind speed. The

Fahrenheit information is numerically converted into
Celsius and announced to the user by speech synthe-
sis: “Temperature at Sourdough is currently –3.2
degrees Celsius.”

Temperature and wind speed are further inter-
preted by calling a third method. This is the prag-
matic part of the interpretation, which uses
temperature and wind thresholds most relevant to the
user who has expressed these rules. Unlike the objec-
tive part of the rule, which merely communicates the
numerical value of the temperature, the pragmatic

part is directly employed to
reach a decision. In our case,
because the temperature is

less than 40 degrees (Fahrenheit), the agent advises
against a bike ride at Sourdough: “It’s bitter cold up
there. Don’t come to Sourdough!” At more moderate
temperatures, the agent would have recommended
bringing additional clothing such as windbreakers in
case the wind speed exceeds a different threshold.
Because the entire dialog takes place using speech,
there is no need for a visualization of the agents. This
kind of application can be used to interface devices
such as cell phones to existing Web pages.

The Pragmatic Web language extensions (such as
the WWW Read condition) allow agents to parse
Web pages. Agents can extract information from
HTML or XML pages.

Domain-oriented agents—The Bridge Builder.
The Bridge Builder is a bridge design environment

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 45

Figure 2. Visual AgenTalk
rules for the Sourdough
mountain biking agent.

Check weather conditions

Check biking conditions at Sourdough Mountain

What does temperature mean to me?

What does Wind mean to me?

biking

Www read

temp
http://culter.colorado.edu/exec/c1metpage

Temperature

is

40

Temp It's bitter cold up there.D

bring the long pants

celcius

Temperature at Sourdough

(temp - 32) / 1.8

analyze-temp

check

analyze-wind

analyze-wind

Make

Make

Make

Set

Make

shorts will be fine

is

65

Temp

is

70

Temp

into:

If

If

If

If

If

Then

Then

Then

to

2 rules

Then

Then

Www read Wind Speed into:
wind
http://culter.colorado.edu/exec/c1metpage

URL:

URL:

While running

On check

On analyze-temp

On analyze-wind

for education. The objec-
tive of the Bridge Builder
activity is to develop an
understanding for static
and dynamic forces on a
bridge. Users are
instructed to build a
bridge with the minimal
number of bricks. Users
modify the bridge design
by adding, removing, and
rearranging bridge compo-
nents. Figure 3 shows evolv-
ing bridge designs.

The Bridge Builder is a
DODE that provides
domain-oriented agents cre-
ated for end users by a high-
level language designer. For
the Bridge Builder, EUD is
the process of composing
agents representing bricks,
tunnels, and soil to create a
working bridge design. To
evaluate the stability of a
bridge, agents must solve
complex diffusion equations
and exchange information with
adjacent agents.

This design environment is live
in the sense it is a running simula-
tion that provides feedback to any
design modification. Bricks under a
great deal of stress will change their
color, providing users with valuable
design information. If, in an effort
to build a bridge with the least num-
ber of bricks, a user removes too
many bricks, the bridge will collapse
and the cars will crash.

The AgentSheets metaphor is powerful because, in
addition to its generality, it supports emergence [2].
For instance, the Bridge Builder brick agents,
although not computationally trivial, have no notion
of column-based or arch-based bridge design. The
solidity of a bridge design is an emergent property.

Another AgentSheets example of a DODE featur-
ing agents is the Kitchen Design, in which agents rep-
resent refrigerators, kitchen sinks, and cabinets that
are arranged into a kitchen design. An example of
more abstract domain-oriented agents is the Voice
Dialog Design Environment [7], which lets designers
of phone-based services quickly build working proto-
types of nested dialogue structures.

Conclusion
Agent-based EUD explores the use of
agents to create adaptable applications.
Specifically, this research investigates
how end users can control agents by
explicitly instructing them through
domain-oriented building blocks. This
process of instruction may unfold at
different levels. The lowest level fea-
tures domain-oriented end-user pro-
gramming languages. Program
manipulation mechanisms such as
drag-and-drop with active feedback
help users to compose, modify, and
perceive the functions of programs. At
a higher level, domain-oriented agents
are used as building blocks of design
environments. We are currently work-
ing on an even higher level that uses
wirelessly connected handheld devices
to run distributed simulations and to
control a central simulation that can
become the domain-oriented building
blocks of collaborative design activi-
ties. In the Mr. Vetro application, end
users experience human physiology
through collaborative role-playing.

Individual organs such as the heart and lung are sim-
ulated on wirelessly connected PocketPCs.

References
1. Fischer, G. Meta-design: Beyond user-centered and participatory design.

In Proceedings of HCI International 2003 (Crete, Greece, 2003), 88–92.
2. Johnson, S. Emergence: The Connected Lives of Ants, Brains, Cities, and

Software. Touchstone, New York, 2002.
3. Nardi, B. A Small Matter of Programming. MIT Press, Cambridge, MA,

1993.
4. Paterno F. D1.2 research agenda: End-user development: Empowering

people to flexibly employ advanced information and communication
technology. End-User Development Network of Excellence (2003), 17.

5. Repenning, A. and Ambach, J. Tactile programming: A unified manip-
ulation paradigm supporting program comprehension, composition and
sharing. In Proceedings of the 1996 IEEE Symposium of Visual Languages
(Boulder, CO, 1996), IEEE-CS, 102–109.

6. Repenning, A. and Sullivan, J. The Pragmatic Web: Agent-based multi-
modal Web interaction with no browser in sight. In Proceedings of the
Ninth IFIP TC13 International Conference on Human-Computer Interac-
tion (Zurich, Switzerland, 2003).

7. Repenning, A. and Sumner, T. Agentsheets: A medium for creating
domain-oriented visual languages. IEEE Computer 28, 3; 17–25.

Alexander Repenning (ralex@cs.colorado.edu) is the CTO of
AgentSheets, Inc., and a professor of computer science at the
University of Colorado at Boulder. He is the creator of the
AgentSheets simulation and game-authoring tool.
Andri Ioannidou (andri@agentsheets.com) is the senior project
manager of AgentSheets, Inc., Boulder, CO.

© 2004 ACM 0001-0782/04/0900 $5.00

c

46 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

Figure 3. A bridge
is designed by
selecting, and

composing agents
from a palette

(top); An ancient
Greek-style,

straight-column
design works but

still uses too many
bricks (middle); A

Roman-style
involving arches

reduces the
number of bricks

(bottom).

