
Naming Page Elements in End-User Web Automation

Michael Bolin and Robert C. Miller
MIT CSAIL
32 Vassar St

Cambridge, MA 02139 USA
{rcm,mbolin}@mit.edu

ABSTRACT
The names of commands and objects are vital to the usability of a
programming system. We are developing a web automation
system in which users need to identify web page elements, such as
hyperlinks and form fields, in pages written by other designers.
Using a survey of 40 users asking them to provide names for page
elements, we found that users' names varied widely. However,
when names were restricted to using only visible words from the
web page, we were able to develop name resolution techniques
that automatically find the desired page element given the user's
name for it, striking a balance between usability and the precision
required by the programming system.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features; D.2.6 [Programming Environments]: Interactive
environments; H.5.2 [User Interfaces]: User-centered design.

General Terms
Algorithms, Experimentation, Human Factors, Languages.

Keywords
End-user web automation, web browsers.

1. INTRODUCTION
The names given to software components – such as variables,
functions, classes, and commands – are an important part of the
user interface of an end-user programming system. Choice of
names, whether made by the system's designers or by end-user
programmers themselves, can affect learnability, recall,
readability, and maintainability of programs. Professional
programmers recognize the importance of names, and naming
conventions are the result (e.g., �[3],�[10]). But a classic study of
naming by Furnas et al. �[2] showed that command names chosen
by different people were unlikely to be consistent. The solution
proposed by Furnas et al. was unlimited aliasing, allowing "many,
many alternate verbal routes" to the same functionality.

In this paper, we discuss how we have applied unlimited aliasing
in the design of an end-user programming system for automating
and customizing interaction with the Web. The main question we

consider is how a user should refer to elements on a web page
(such as hyperlinks and form fields) in customization or scripting,
particularly when the web page was authored by another designer.

In the next section (section 2), we discuss a number of design
principles that interact in the choice of a name. In section 3, we
describe Chickenfoot, the end-user web automation system we are
developing. In section 4, we present a pilot study we conducted
to learn how users might name web page elements. Finally, in
section 5, we outline a name resolution algorithm that implements
a form of automatic aliasing that performs well on the kinds of
names we discovered in the study.

2. DESIGN PRINCIPLES
The goal of a name, whether used in programming or in natural
language, is to identify a thing, so that both the writer and the
reader agree about which thing is under discussion. Unlike natural
languages, however, programming languages have two kinds of
readers with very different needs: software and humans. In this
section, we discuss some of the properties of names that are
relevant to programming, and how they matter to these two kinds
of readers.

Precision. To software tools, such as compilers or interpreters, the
most important property of a name is precision. A precise name
identifies exactly one thing. Naming systems in software are
generally designed to minimize ambiguity, rejecting attempts to
introduce names that would be imprecise. For example, file
systems generally refuse to allow two files of the same name in
the same directory. In Java, two variables in the same scope may
not share the same name, and two classes with the same name may
not be imported simultaneously. For a software tool, name
collisions are the worst kind of failure that can occur, since they
leave the software unable to resolve references to the name.

Precision is not as important to people, since humans are more
tolerant of ambiguity. One way people resolve ambiguity is by
appealing to context. For example, in a discussion of Java
collection classes, List probably means the collection class
java.util.List, not the user interface widget java.awt.List. Another
way to resolve ambiguity is to engage in a dialogue ("Which List
do you mean?"), but this is only feasible when the communication
is interactive.

Robustness. Since software engineering is also concerned with
the correctness of a program over its entire lifecycle
(maintainability) and in other contexts (reuse and extensibility), a
well-chosen name in a well-designed naming system should
remain precise as a program is modified and combined with code
written by other programmers. The need for precision over time
and space is what drives naming systems to introduce scoping and

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
First Workshop on End-User Software Engineering (WEUSE I).May 21
2005, Saint Louis, Missouri, USA.
Copyright ACM 1-59593-131-7/05/0005$5.00.

1

package mechanisms, in order to isolate one module's names from
another's. When names chosen by different programmers must
coexist, naming conventions are developed that reduce the chance
of a collision, usually by referring to an external source of unique
identifiers. For example, Java programmers are encouraged to
prefix their package names with their organization's domain name,
such as com.sun.*, since the uniqueness of domain names is
guaranteed by domain name registrars �[9]. An extreme form of
this approach is the use of universally unique identifiers (UUIDs),
constructed from a network card's MAC address and the current
clock time. UUIDs are used in Microsoft COM to name classes
and interfaces, and in RDF to name objects and properties.

Suggestiveness. If every name were a UUID, precision and
robustness would be satisfied, and complicated scoping and
namespace rules would be unnecessary. (Indeed, many source
code analysis tools internally rename all the user's messy names
with fresh unique identifiers to simplify managing these rules.)
Human programmers, on the other hand, would find this
intolerable, since they depend on other properties of a name. The
most important of these properties is suggestiveness, the extent to
which a name describes the content, use, and type of the thing it
identifies. A variable named radius is more suggestive than one
named r. Suggestiveness depends strongly on shared experience
between the writer of the code and its reader, and also on the
context of the code. In code dealing with polar coordinates, r may
be just as suggestive as radius.

Suggestiveness lies behind recommendations to use long
identifiers, including whole words and multiple words, and
avoiding unnecessary abbreviations. Suggestiveness drives the
naming conventions used in many languages and APIs. In Java,
for example, case distinctions are conventionally used to suggest
whether a name refers to a variable (string), a class (String) or a
constant (STRING). Hungarian notation �[9], first articulated by
Charles Simonyi and widely used in the Microsoft Windows API,
uses short prefixes to encode the type of a variable in the name.
For example, in lpszFirstName, the prefix lpsz means long pointer
to string terminated by zero. Hungarian notation can make finer
distinctions in type and usage than the C/C++ type system is
capable of expressing. For example, ichFirstName and
cchFirstName are both integer variables, but the former should be
used an index into a character array, while the latter represents the
count of the characters in the array.

Names have other properties that are important for human readers.
Some of these properties can be derived from well-known
usability design heuristics �[6]:

Consistency means using similar names for similar things, and
dissimilar names for dissimilar things. For example, a human
reader can more readily recognize an idiom like for (int i=0; i<n;
++i) when the loop control variable is consistently named i.
Conversely, using s1 to name a string and s2 for a stream in the
same function is ripe for confusion. Naming conventions help
improve consistency.

Efficiency means that (all other properties equal) a shorter name
is better than a longer name. Shorter names are simply faster to
use, whether the user is typing them, reading them, or speaking
them. Efficiency often forces a tradeoff with suggestiveness,
since shorter names have fewer suggestive cues.

Error prevention is also desirable. A good name should not be
prone to misspelling or misreading. For example, weird may be
easily misspelled as wierd or misread as wired. We noticed this
effect in developing a text pattern language which used containing
as a pattern operator. So many users mistyped it as containg –
even we, the system's developers, made the same mistake – that
we eventually added containg to the grammar as an alias, as well
as the less error-prone contains.

Pronunciation. Although names in computer systems are
primarily used in written form (typed on a keyboard or read on a
screen or on paper), pronunciation also matters, since people often
talk about the names. In software development, this may happen
in design discussions, code reviews, classes, or in pair
programming. Unpronounceable names like m_lprgchName
seriously inhibit this kind of communication. URLs were not
designed with pronunciation in mind: http://www is so hard to say
that most speakers simply omit it, and web browsers wisely
tolerate the omission. (Tim Berners-Lee reads www as "wuh-
wuh-wuh," but that hasn't caught on.)

3. CHICKENFOOT
We have encountered some of these naming issues in the design
of Chickenfoot, an end-user programming system integrated into a
web browser.

The primary goal of Chickenfoot is to give the user a platform for
automating and customizing their interaction with the Web.
Although web browsers have a long history of built-in scripting
languages, these languages are not designed for the end user of a
web site. Instead, languages like JavaScript, Java, and Curl �[7] are
aimed at designers of web sites. Granted, many web designers
lack a traditional programming background, so they may be
considered end-user programmers in that respect. But the needs of
a designer, building a web application from whole cloth, differ
significantly from the needs of a user looking to tailor or script an
existing web site. Current web scripting languages do not serve
the needs of web automation.

A second goal of Chickenfoot is to allow the end user to automate
and customize web sites using a familiar interface, namely the
web site's user interface. Existing approaches to web automation
use a scripting language that dwells outside the web browser, such
as Perl, Python, screen-scraper �[1], and WebL �[4]. For an end-
user, the distinction is significant. Cookies, authentication, session
identifiers, plugins, user agents, client-side scripting, and proxies
can all conspire to make the Web look significantly different to a
script running outside the web browser. But perhaps the most
telling difference, and the most intimidating one for an end user,
is the simple fact that outside a web browser, a web page is just
raw HTML. Even the most familiar web portal looks frighteningly
complicated when viewed as HTML source. So the challenge for
Chickenfoot can be simply stated: a user should never have to
view the HTML source of a web site in order to customize or
automate it.

Chickenfoot is targeted mainly at three kinds of automation:

Automating repetitive operations. For example, many
conferences now use a web site to receive papers, distribute them
to reviewers, and collect the reviews. A reviewer assigned 10
papers to read and review faces a lot of repetitive web browsing to
download each paper, print it, and later upload a review. Tedious

2

repetition is a strong argument for automation. Other examples
include submitting multiple search queries and comparing the
results, and collecting multiple pages of search results into a
single page for sorting, filtering, or printing.

Integrating multiple web sites. Some web sites already provide
some level of integration with other sites. For example, many
retailers use MapQuest to display their store locations and provide
driving directions. But end-users have no control over this
integration. For example, before buying a book from an online
bookstore, a user may want to know whether it is available in the
local library—a question that can be answered by submitting a
query to the library’s online catalog interface. Yet the online
bookstore is unlikely to provide this kind of integration, not only
because it may lose sales, but because the choice of library is
inherently local and personalized to the user.

Transforming a web site's appearance. Examples of this kind
of customization include changing defaults for form fields,
filtering or rearranging web page content, and changing fonts,
colors, or element sizes. Web sites that use Cascading Style
Sheets (CSS) have the potential to give the end user substantial
control over how the site is displayed, since the user can override
the presentation with personal stylesheet rules. With the exception
of font preferences, however, current web browsers do not expose
this capability in any usable way.

3.1 Design
Chickenfoot is being developed as an extension to the Mozilla
Firefox web browser. Chickenfoot's design has two parts: (1) a
development environment that allows users to enter and test
Chickenfoot programs, and (2) a library that extends the browser's
built-in Javascript language with new commands for web
automation.

Figure 1 shows a screenshot of the development environment
presented by the current Chickenfoot prototype, which appears as
a sidebar in Firefox. At the top of the sidebar is a text editor
which accepts a Javascript program, which may be merely a single
expression or command to execute, or a larger program with
function and class definitions. The bottom of the sidebar is a
console output window, which displays error messages, printed
output, and the result of evaluating the Javascript code (i.e., the
value of the last expression). This interface, though minimal,
goes a long way toward making the Javascript interpreter
embedded in every web browser actually accessible to the end-
user. Previously, there were only two ways to run Javascript in a

web browser: by embedding it in a web page (generally
impossible if the page is fetched from a remote web site, since the
user can't edit it), or by using a javascript: URL, which requires
the entire program to be written on a single line.

A Javascript program running in the Chickenfoot sidebar operates
on the web page shown in the main part of the window. Unlike
most Javascript, Chickenfoot scripts run with no security
restrictions, since they are developed and run by the end-user, not
downloaded from a potentially malicious remote site. A
Chickenfoot script is therefore free to interact with web pages
from arbitrary sites and examine any aspect of the web browser's
history or user interface.

Chickenfoot extends the standard client-side Javascript with a
number of commands to simplify web automation. Some of these
commands simulate actions that a web user can perform on the
hyperlinks and forms of a web page:
 click (link-or-button)
 enter (textbox, value)
 pick (menu-or-list, option)
 check (checkbox-or-radiobutton)
 uncheck (checkbox)
These commands raise the question at the heart of this paper: what
name should we use for the page object (link, button, or other
widget) that a command should act on?

For a form widget, like a textbox or a checkbox, one possibility is
the name assigned to the widget by the web page designer. This is
the name used by Javascript embedded in the web page, and in the
HTTP request sent back to the web server when the form is
submitted. One key drawback of this name is that it isn't readily
available to a web user without examining the HTML source,
which contradicts one of the goals of Chickenfoot. The
Chickenfoot development environment could solve this problem
(e.g., by making form field names visible in the page on
command). But these names have a second problem: since they
are not chosen by the web user nor intended to be seen by the web
user, they are not likely to be suggestive. For example, Google
forms use names like as_q, as_qdr, and as_occt; MapQuest fields
look like 2c and 2s. These names are virtually opaque to a user.

Another possibility is to use pointing to identify a page object,
rather than a textual name. Indeed, this approach makes a lot of
sense when the user is developing a new script, and our future
plans include creating a programming-by-demonstration system
on top of Chickenfoot, so that the user's clicks and keystrokes are
translated automatically into Chickenfoot statements. But even if
the user points at page objects to generate Chickenfoot code, there
remains the question of what names to display in the generated
code. Although visual representations of the code are possible
(e.g. �[5],�[6]), a compact textual name would be more efficient of
screen real estate and more pronounceable.

We chose to explore a third option: using visible labels in the
page to identify page objects. For example, hyperlinks and
buttons typically contain a visible text label that can be used with
the click command:
 click("Google Search")
Other form widgets, such as textboxes and lists, have captions
adjacent to the widget that can be used with other commands:
 enter("User name", "john@hotmail.com")
 enter("Password", "bri56ght")
 click("Sign In")

Figure 1. Chickenfoot development environment running

inside the Firefox web browser.

3

Visible labels are very likely to be suggestive names, because they
are chosen by a web site designer to be read and understood by a
user, and also because the user is likely to be familiar with them
from manually interacting with the web site. One challenge for
this technique is the use of inline images for labeling hyperlinks
and buttons. Fortunately, well-designed web sites offer ALT text
for these images, intended to help visually-impaired users with
screen readers, but which can help Chickenfoot as well. For
images with no ALT text, we must fall back to other naming
methods, such as internal page names.

4. NAMING SURVEY
To explore the usability of visible labels as names, we conducted
a small pilot survey to find out what kinds of names users would
generate for form fields, and whether they could comprehend
names based on visible labels. Our survey focused on textboxes,
which are probably the most common form field on the Web.

4.1 Method
The survey was presented entirely over the Web. It consisted of
three parts, always in the same sequence. Part 1 explored freeform
generation of names: given no constraints, what names would
users generate? Each task in Part 1 showed a screenshot of a web
page with one textbox highlighted in red, and asked the user to
supply a name that "uniquely identified" the highlighted textbox.
Users were explicitly told that spaces in names were acceptable.
Part 2 tested comprehension of names that we generated from
visible labels. Each task in Part 2 presented a name and a
screenshot of a web page, and asked the user to click on the
textbox identified by the given name. Part 3 repeated Part 1
(using fresh web pages), but also required the name to be
composed only of "words you see in the picture" or "numbers" (so
that ambiguous names could be made unique by counting, e.g.
"2nd Month").

The whole survey used 20 web pages: 6 pages in Part 1, 8 in Part
2, and 6 in Part 3. The web pages were taken from popular sites,
such as the Wall Street Journal, the Weather Channel, Google,
AOL, MapQuest, and Amazon. Pages were selected to reflect the
diversity of textbox labeling seen across the Web, including
simple captions (Figure 2a), wordy captions (Figure 2b), captions
displayed as default values for the textbox (Figure 2c), and
missing captions (Figure 2d). Several of the pages also posed
ambiguity problems, such as multiple textboxes with similar or
identical captions.

Subjects were unpaid volunteers recruited from the university
campus by mailing lists. Forty subjects took the pilot survey (20
females, 20 males), including both programmers and
nonprogrammers (24 reported their programming experience as
"some" or "lots", 15 as "little" or "none", meaning at most one

programming class). All but one subject were experienced web
users, reporting web usage at least several times a week.

4.2 Results
We analyzed Part 1 by classifying each name generated by a user
into one of four categories: (1) visible if the name used only
words that were visible somewhere on the web page (e.g., "User
name" for Figure 2a); (2) semantic if at least one word in the
name was not found on the page, but was semantically relevant to
the domain (e.g., "login name"); (3) layout if the name referred to
the textbox's position on the page rather than its semantics (e.g.,
"top box right hand side"); and (4) example if the user used an
example of a possible value for the textbox (e.g. "johnsmith056").
About a third of the names included words describing the type of
the page object, such as "field", "box", "entry", and "selection";
we ignored these when classifying a name.

Two users consistently used example names throughout Part 1; no
other users did. (It is possible these users misunderstood the
directions, but since the survey was conducted anonymously over
the Web, it was hard to ask them.) Similarly, one user used layout
names consistently in Part 1, and no others did. The remaining 37
users generated either visible or semantic names. When the
textbox had an explicit, concise caption, visible names dominated
strongly (e.g., 31 out of 40 names for Figure 2a were visible).
When the textbox had a wordy caption, users tended to seek a
more concise name (so only 6 out of 40 names for Figure 2b were
visible). Even when a caption was missing, however, the words
on the page exerted some effect on users' naming (so 12 out of 40
names for Figure 2d were visible).

Part 2 found that users could flawlessly find the textbox
associated with a visible name when the name was unambiguous.
When a name was potentially ambiguous, users tended to resolve
the ambiguity by choosing the first likely match found in a visual
scan of the page. When the ambiguity was caused by both visible
matching and semantic matching, however, users tended to prefer
the visible match: given "City" as the target name for Go.com, 36
out of 40 users chose one of the two textboxes explicitly labeled
"City"; the remaining 4 users chose the "Zip code" textbox, a
semantic match that appears higher on the page. The user's visual
scan also did not always proceed from top to bottom; given "First
Search" as the target name for eBay.com, most users picked the
search box in the middle of the page, rather than the search box
tucked away in the upper right corner.

Part 3's names were almost all visible (235 names out of 240),
since the directions requested only words from the page. Even in
visible naming, however, users rarely reproduced a caption
exactly; they would change capitalization, transpose words
(writing "web search" when the caption read "Search the Web"),
and mistype words. Some Part 3 answers also included the type
of the page object ("box", "entry", "field"). When asked to name a
textbox which had an ambiguous caption (e.g. "Search" on a page
with more than one search form), most users noticed the
ambiguity and tried to resolve it with one of two approaches:
either counting occurrences ("search 2") or referring to other
nearby captions, such as section headings ("search products").

5. AUTOMATIC NAME RESOLUTION
We have used the names from Part 3 of the survey to develop a
heuristic algorithm for resolving names to textboxes in

Figure 2. Sample textboxes used in the web survey.

(b)

(d) (c)

(a)

4

Chickenfoot. Given a name and a web page, the output of the
algorithm is one of the following: (1) a textbox on the page that
best matches that name; (2) ambiguous match if two or more
textboxes are considered equally good matches; or (3) no match if
no suitable match can be found.

The first step is to identify the text labels in the page that
approximately match the provided name, where a label is a visible
string of content delimited by block-level tags (e.g. <P>,
,
<TD>). Button labels and ALT attributes on images are also
treated as visible labels. Before comparison, both the name and
the visible labels are normalized by eliminating capitalization,
punctuation, and white space. Then each label is searched for an
approximate occurrence of the name, using a conventional edit
distance algorithm to tolerate typos and omitted words. Matching
labels are ranked by edit distance, so that closer matches are
ranked higher.

For each matching label, we search the web page for textboxes for
which it might be a label. Any textbox that is roughly aligned
with the label (so that extending the textbox area horizontally or
vertically would intersect the label's bounding box) is paired with
the label to produce a candidate (label,textbox) pair.

These pairs are further scored by several heuristics that measure
the degree of association between the label and the textbox. First
is pixel distance: if the label is too far from the textbox, the pair is
eliminated from consideration. Currently, we use a vertical
threshold of 1.5 times the height of the textbox, but no horizontal
threshold, since tabular form layouts often create large horizontal
gaps between captions and their textboxes. The second heuristic
is relative position: if the label appears below or to the right of the
textbox, the rank of the pair is decreased, since these are unusual
places for a caption. We don't completely rule them out, though,
because users sometimes use the label of a nearby button, such as
"Search", to describe a textbox, and the button may be below or to
the right of the textbox. The final heuristic is distance in the
document tree: each (label,textbox) is scored by the length of the
minimum path from the label node to the textbox node in the
document's element tree. Thus labels and textboxes that are
siblings in the tree have the highest degree of association.

The result is a ranked list of (label, textbox) pairs. The algorithm
returns the textbox of the highest-ranked pair, unless the top two
pairs have the same score, in which case it returns ambiguous
match. If the list of pairs is empty, it returns no match.

The performance of this algorithm is shown in Figure 3, tested on
the 240 names (40 for each of the 6 pages) from Part 3 of the
survey. For each name, the algorithm had three possible results:
finding the right textbox (Match), reporting an ambiguous match

(Ambiguous), or finding the wrong textbox (Mismatch). Precision
is high for 5 of the 6 pages. Performance is poor on the MIT page
because it involved an ambiguous caption, and our heuristic
algorithm does not yet recognize the disambiguation strategies
used for this caption (counting and section headings). This
evaluation is only preliminary, but it suggests that names derived
from visible labels can be automatically resolved with high
precision.

6. CONCLUSION
We have shown preliminary results that visible naming (unlimited
aliasing that uses words that are visible in the page) is a promising
strategy for identifying elements in web pages. Web pages are
just one kind of user interface that can be customized and
automated. We anticipate that these results will generalize to other
user interfaces that include textual labeling.

Future work includes improving the Chickenfoot development
environment so that ambiguous names can be disambiguated
during code entry, which allows for an ambiguity resolution
dialog between the user and the system that wouldn't be sensible
at runtime. We are also looking at the robustness of syntactic
names against change in web sites. Dealing with web sites that
change without warning is a challenge for web automation, but as
yet no one has adequately characterized the kinds of changes that
occur.

7. ACKNOWLEDGMENTS
We thank all the pilot users who took our web survey, as well as
Maya Dobuzhskaya, Vineet Sinha, Philip Rha, and other members
of the LAPIS group who provided valuable feedback on the ideas
in this paper. This work was supported in part by the National
Science Foundation under award number IIS-0447800. Any
opinions, findings, conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

8. REFERENCES
[1] Ekiwi, LLC. screen-scraper: solutions for web data extraction.

http://www.screen-scraper.com/
[2] Furnas, G.W., Landauer, T.K., Gomez, L.M., and Dumais, S.T. "The

vocabulary problem in human-system communication." Commun.
ACM, 30, 11 (Nov 1987).

[3] Green, R. "How To Write Unmaintainable Code."
http://mindprod.com/unmain.html

[4] Kistler, T. and Marais, H. "WebL – a programming language for the
Web." Proc. WWW7, 1998.

[5] Kurlander, D. "Chimera: Example-based graphical editing." In
Cypher, A., ed., Watch What I Do: Programming By
Demonstration, pp 271–292. MIT Press, 1993.

[6] Modugno, F., Corbett, A.T., and Myers, B.A. "Graphical
Representation of Programs in a Demonstrational Visual Shell - An
Empirical Evaluation." ACM TOCHI, 4, 3, pp 276-308.

[7] Müffke, F. "The Curl programming environment." Dr. Dobb’s
Journal, Sept. 2001.

[8] Nielsen, J. Usability Engineering. Academic Press, 1993.
[9] Simonyi, C. and Heller, M. "The Hungarian Revolution," BYTE, 16,

8 (Aug. 1991).
[10] Sun Microsystems. "Code Conventions for the Java Programming

Language." http://java.sun.com/docs/codeconv

0%
10%

20%
30%

40%
50%

60%
70%

80%
90%

100%

Yahoo Expedia Amazon MIT Vivisimo Google

Mismatch

Ambiguous

Match`

Figure 3. Precision of automatic name resolution.

5

