
Therefore, EUD is only a
partial success story. Here, we
argue the spread of EUD
depends on a fine balance
between user motivation, effec-
tive tools, and management sup-
port. We explore that balance
and investigate a future
approach to EUD—meta-
design—that proposes a vision
in which design, learning, and
development become part of
everyday working practice.

Designing language for user-
computer communication poses
a conflict between complexity
and power. More complex lan-
guages can address a wider range
of problems but impose an

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 33

The future success of EUD depends on
creating tools that end users are motivated to
learn and use in daily work practices.

By G. Fischer,
E. Giaccardi, Y. Ye,
A.G. Sutcliffe,
and N. Mehandjiev

End-user development (EUD) activities range
from customization to component configuration
and programming. Office software, such as the
ubiquitous spreadsheet, provides customization
facilities, while the growth of the Web has added
impetus to end-user scripting for interactive func-
tions in Web sites. In scientific and engineering
domains, end users frequently develop complex sys-
tems with standard programming languages such as
C++ and Java. However, only a minority of users
adapt commercial off-the-shelf (COTS) software
products. Indeed, composing systems from reusable
components, such as enterprise resource planing
(ERP) systems, defeats most end users who resort to
expensive and scarce expert developers for imple-
mentation.

META-DESIGN:
A MANIFESTO FOR
END-USER DEVELOPMENT

34 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

increased learning burden on the user. Text-based
languages tend to be more complex because the syn-
tax and lexicon (terminology) must be learned from
scratch, as with any human language. Consequently,
languages designed specifically for end users repre-
sent the programmable world as graphical metaphors
containing agents that can be instructed to behave by
condition-action rules. The aim is to reduce the cog-
nitive burden of learning by shrinking the conceptual
distance between actions in the real world and pro-
gramming.

A key trade-off in EUD languages is between their
scope of application and learning costs, as illustrated
in Figure 1. In the high cost, high scope cell are tradi-
tional programming lan-
guages, Java and C++,
employed by highly moti-
vated end users particularly
in scientific domains. At the
convergence of this cell and
the high scope, lower cost
cell are the majority of cur-
rent EUD languages that
have evolved as simplified
versions of full program-
ming languages, for exam-
ple, Web scripting
languages. The low scope,
high cost cell is occupied by
only a small number of
domain-specific program-
ming languages developed
to address the requirements
in complex engineering domains, such as device con-
trollers. These languages impose a considerable
learning burden, but are worth it for improving effi-
ciency over a general-purpose language. The low cost,
low scope cell contains domain-specific EUD lan-
guages that lower the learning burden but at the price
of addressing only a specific application area. In this
cell, EUD languages merge with the customization
of COTS software packages so the act of program-
ming is reduced to entering parameters in a form-fill-
ing dialogue. Closer to the higher scope boundary
are macro languages that extend the office-style
applications, for example, formulae for Excel spread-
sheets, and database query languages. Finally, the
high scope, low cost cell is the EUD ideal, although
still largely unattained. The current state-of-the-art
EUD environments provide graphical worlds to cre-
ate programmable agents that still impose a learning
burden of instructing agents with condition-action
rules, and designing agent models.

Active EUD environments attempt to infer pro-

grams as instructions from user manipulations of
agent worlds. The graphical agent worlds must still
be designed, but once present, programming by
example [5] can infer instructions from the users’
actions; for example, in a robot game the user
demonstrates an agent bumping into a wall followed
by reversing two steps and changing direction. The
system infers the condition-action rule of detect-a-
collision followed by the appropriate reverse-and-
change-direction response. This approach reduces
learning by semiautomatic rule acquisition, but the
downside is the learning system can make mistakes.
The learning styles range from more complete infer-
ence to direct instruction, where the system learns

only when given a command.
Direct instruction requires
the user to anticipate all the
possible rules and learning
situations, while the com-
plete inference approach is
limited by the system’s
domain knowledge. Devel-
oping the model is the diffi-
cult part and therein lies the
real challenge for end-user
design—abstract conceptual
thinking. Complex domains
require sophisticated analysis
and modeling skills; pro-
gramming is only part of an
end-user developer’s needs.

The goal for EUD tools is to reduce the learning
burden while providing powerful facilities to address
a wide range of problems. Given that some learning
burden will always be present, tools must motivate
their users. We propose a meta-design approach [4],
where users are motivated to learn by examples and
demonstrations of working systems to show them
what is achievable.

Managerial and Social Perspective
EUD is a long-standing concern within organiza-
tions. Managerial issues, illustrated in Figure 2, are
based on previous surveys of end-user computing
[2, 9] and our more recent investigation into the
task-organizational fit of EUD technology [6]. Do-
it-yourself development is a balance of benefits and
cost. User motivators are empowerment from being
able to complete a job more effectively, speed of
development, flexibility and local control so pro-
gramming can be on demand. Another benefit is
eliminating potential miscommunications of
requirements to specialist software engineers, thus
avoiding the frustration with perceived poor ser-

High

High Low

Scope

Low

Java Script
VB Script Excel macros

Office Applications
Report writers
Query screen
buildersDomain engineering

languages
SDL
Hardware design

Domain-specific
languages
Customization
Adaptation

Current EUD envs
Agentsheets
Alice

Java
C++

EUD
ideal

Cost of learning

Figure 1. Cost-scope
trade-offs in EUD tools.

vice from the IS department. Success stories can
create motivational capital to help users over the
hump of learning until actual benefits arrive in the
form of working applications. User motivation
should be encouraged during the early stages of
adoption by management support, training, and
task forces to spread best practice and expertise.
This counteracts user costs such as selecting appro-
priate technology, installing and learning it, pro-
gramming, and debugging.

A number of context and management issues
influence the balance between costs and benefits. For
example, EUD can be dangerous in safety-critical
domains where software must be reliable and accu-
rate. User costs can be sig-
nificantly influenced by
the scale and complexity
of the domain, so safer,
less complex domains
should be selected for
EUD. Changeability of
the domain can be a
motivator for EUD adop-
tion, since end users can
respond to rapidly evolv-
ing requirements more
quickly than traditional
development; however,
rapid change can lead to
throw-away software and
lost development effort. Management issues include
risks associated with EUD, perceived by IT manage-
ment to create unreliable and unmanageable soft-
ware. Other risks are inaccurate information and
security with increased exposure to hacking attacks.

The conflict between IT management and end
users over power, authority, and control of IT systems
may be a productive force for change or it may lead
to disruption, mistrust, and failure. It can be argued
that enforcing standards and controlling end users
leads to more cost-efficient development and less
waste from unreliable software. However, rigid top-
down control may only cause resentment among end
users. The control-power conflict between users and
IT management will not evaporate; but constructive
support and training fosters success, encourages
responsibility, and enables management to control by
leadership.

Critical success factors for EUD depend on the
domain. In a culture of high end-user motivation and
low managerial influence—a common situation in
scientific and engineering domains, educational
applications, and interactive art—success is simply a
matter of users taking development into their own

hands, often using standard programming languages.
However, in most business domains, training, techni-
cal, and management support are vital for helping
EUD flourish. A culture of cooperation shares the
responsibility for developing accurate and effective
solutions. Local experts among the end-user commu-
nity spread expertise and advice, although power
users can be prone to migrating to the wrong side of
the “us” and “them” (IT department) fence [7, 8].
Technology should provide easy integration with
other information systems and optimized support for
EUD tasks. Progress in the technology area is still
necessary to unlock the true potential for EUD.

The set of EUD critical success factors suggests the
need for a socio-techni-
cal approach to increase
user motivation and
decrease cognitive and
organizational costs.
Such an approach sug-
gests a future technolog-
ical framework with
tools for discovery-led
design to balance learn-
ing costs with results-
driven motivation. We
propose meta-design,

which is an evolution of domain-oriented design
environments (DODEs) [3] as a vision in which
design, learning, and development become everyday
working practice.

Meta-design
Meta-design characterizes objectives, techniques,
and processes for creating new media and environ-
ments allowing “owners of problems” (that is, end
users) to act as designers. A fundamental objective
of meta-design is to create socio-technical environ-
ments that empower users to engage actively in the
continuous development of systems rather than
being restricted to the use of existing systems.

In all design processes, two basic stages can be dif-
ferentiated: design time and use time. At design time,
system developers (with or without user involve-
ment) create environments and tools. In conven-
tional design they create complete systems. Because
the needs, objectives, and situational contexts of users
can only be anticipated at design time, users often
find the system unfit for their tasks at use time, thus
requiring modification of existing systems. To
accommodate unexpected issues at use time, systems
must be “underdesigned” at design time. Underde-
sign represents a fundamental shift in the approach to
the creation of systems, but it does not mean less

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 35

Management
issues

User
costs

Context
issues

User
motivations

Culture
Training
Support

Local experts

Technology:
ease of use
integration

task support

power, control
responsibility

standards
cost effectiveness

empowerment
flexibility

speed of delivery
local control

poor IS Dept.
service

complexity
criticality
changeability

learning
programming
debugging

reduce

reduce

reliability
accuracy
security
risk

can
increase

potential
conflict

trade-off

influence

Critical success
factors

Figure 2. Relationships
between social and managerial

issues in EUD.

work or fewer demands on the design team. Instead
of designers aiming at designing complete solutions
for users at design time, underdesign aims to provide
social and technical instruments for the owners of
problems to create the solutions themselves at use
time. Within the overall approach of meta-design,
underdesign is a defining activity to create design
spaces for others.

Meta-design extends the traditional notion of sys-
tem development to include users in an ongoing
process as co-designers, not only at design time but
throughout the entire existence of the system. A nec-
essary, although not sufficient, condition for meta-
design is that software systems include advanced
features permitting users to create complex cus-
tomizations and extensions. Rather than presenting
users with closed systems, meta-design provides them
with opportunities, tools, and social structures to
extend the system to fit their needs. Meta-design
shares some important
objectives with user-cen-
tered and participatory
design, but it transcends
these objectives by
changing the processes by
which systems and con-
tent are designed. Meta-
design shifts control from
designers to users and
empowers users to create
and contribute their own
visions and objectives.
Meta-design promotes
“designing the design process” to a first-class activity,
so that creating the technical and social conditions
for broad participation in design activities becomes
as important as creating the artifact itself. It creates
the enabling conditions for collaborative design in
which all participants, not just skilled computer pro-
fessionals, incrementally acquire ownership of prob-
lems and contribute actively to their solutions.

To support meta-design, we have developed the
seeding, evolutionary growth, and reseeding (SER)
process model. As illustrated in Figure 3, SER is a
descriptive and prescriptive model for large evolving
systems and information repositories, postulating
that systems that evolve over a sustained time span
must continually alternate between periods of activ-
ity, unplanned evolution, and periods of deliberate
(re)structuring and enhancement. The SER model
encourages designers to conceptualize their activity as
meta-design, thereby supporting users as designers
rather than restricting them to passive consumers.

To demonstrate the broad applicability and power

of meta-design, we have applied the framework in a
number of different application areas, including
three briefly mentioned here:

Social creativity. Complex design problems
require more knowledge than any single person can
possess, and the knowledge relevant to a problem is
often distributed among stakeholders from different
perspectives and backgrounds. The solution of com-
plex design problems requires social creativity in
which all stakeholders reach a shared understanding
by contributing their different points of view and
knowledge. We have applied the meta-design
approach in the creation of augmented reality envi-
ronments in urban planning [1]. The tools them-
selves are not solutions to any particular problem,
but provide the socio-technical environment for
stakeholders to become informed participants. The
immediate and visual feedback facilitates the cre-
ation of a shared understanding leading to new

insights, new ideas, and
new artifacts as a result
of collaboration.

Open source. Open
source development is an
activity in which a com-
munity of software devel-
opers collaboratively
constructs systems to
help solve problems of
shared interest and for

mutual benefit. The original designers of an open
source system do not provide a complete solution
that addresses all problems of potential users; they
provide a seed that can be evolved by users at use
time. The ability to change source code, the techno-
logical means of sharing changes over the Internet,
and the spontaneous social support among commu-
nity members are the enabling conditions for collab-
orative construction of software. Software is changed
from a fixed entity produced and controlled by a
closed group of designers to an open effort that
allows a community to design collaboratively follow-
ing the framework provided by the SER process
model. The success of open source systems exempli-
fies meta-design by openly embracing users as co-
designers by releasing incomplete code; actively
soliciting and incorporating user contributions;
strategically sharing the control over original design-
ers and users by granting users direct access to source
code; aggressively promoting mutual learning among
community members through mailing lists; and
deliberately fostering a reward and recognition struc-
ture that motivates active participation by explicitly
acknowledging and promoting contributors [10].

36 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

Reseeded
Information

Space

Seeded
Information

Space

Evolutionary Growth

Evolved
Information

Space

Developers UsersDevelopers Users

Users

ReseedingSeeding

Figure 3. The seeding,
evolutionary growth, and
reseeding process model.

Open source projects based on meta-design have a
lower cost for each user because the development cost
is distributed among a large number of participants
and individual contributions are shared.

Interactive art. Conceptualized as meta-design,
interactive art [4] focuses on participation and col-
laboration as forms of co-creation, in which users
become co-developers of artwork. The original seed
design establishes a context in which users can
actively produce new content and meaning through a
process of mutual interaction and evolutionary
growth. By putting the tools rather than the object of
design in the hands of users, interactive art seeds col-
laboration between the participants (both technical
and human) and sees this interaction as the real
object of creative production. Hence meta-design
creates interactive systems that define the conditions
for interaction. Meta-design environments not only
allow users to create content, but also modify the
behavior and components of the system at use time
through interaction (see A-Volve;
www.iamas.ac.jp/~christa/). The initial seed is often
developed by a community of artists, and can be
adjusted and improved according to the talk-back
deriving from the continuing experience of using the
creative environment as in SITO, (www.sito.org), a
virtual community of artists-participants. Interaction
and evolution occur both at the level of the develop-
ment of materials and at the level of the creation,
elaboration and completion of collective artworks.
Interactive art emphasizes different objectives com-
pared to traditional design approaches, including cul-
tural shifts from following guidelines and rules to
learning from exceptions and negotiations, content
to context of design, changing focus from design
objects to process, and from working with represen-
tation to the act of construction.

Conclusion
To evolve, EUD development needs technologies
that foster collaboration between communities of
end-user designers and users and managers, while
increasing motivation and reducing cognitive and
organizational costs. Meta-design provides a path-
way to transform development as coding—a dis-
crete computing activity—into design of artifacts as
part of the users’ work (or leisure) practice.

Meta-design puts owners of problems in charge of
creating open, evolvable systems that address the lim-
itations associated with closed systems. Open systems
allow significant modifications when the need arises
and the evolution takes place through modifications
by the owners of problems as a major design activity.
Meta-design is more than a technical problem; it

must address the challenges of creating new mind-
sets, new sources of creativity, cultural changes, and
innovative societies. It has the potential to create a
culture in which all participants in collaborative
design processes can express themselves and engage in
personally meaningful activities.

References
1. Arias, E.G., Eden, H., Fischer, G., Gorman, A., and Scharff, E. Tran-

scending the individual human mind: Creating shared understanding
through collaborative design. ACM Trans. on Computer-Human Inter-
action 7, 1 (2000). ACM, NY, 84–113.

2. Brancheau, J.C., and Brown, C.V. The management of end user com-
puting: Status and directions. ACM Computing Surveys 25, 4. ACM,
NY, (1993), 437–482.

3. Fischer, G. Domain-oriented design environments. Automated Soft-
ware Engineering, 1, 2 (1994), 177–203.

4. Fischer, G., and Giaccardi, E. Meta-design: A framework for the
future of end user development. End User Development: Empowering
People to Flexibly Employ Advanced Information and Communication
Technology. H. Lieberman, F. Paternò, and V. Wulf, Eds. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 2004, in press.

5. Lieberman, H., Ed. Your Wish Is My Command: Programming By
Example. Morgan Kaufmann, San Francisco, 2001.

6. Mehandjiev, N., Sutcliffe, A.G., and Lee, D. Organisational views of
end user development. End User Development: Empowering People to
Flexibly Employ Advanced Information and Communication Technology.
H. Lieberman, F. Paternò, and V. Wulf, Eds. Kluwer Academic Pub-
lishers, Dordrecht, The Netherlands, 2004, in press.

7. Mumford, E., and Henshall, D. A Participative Approach to Computer
System Design. Associated Business Press, London, 1979.

8. National Research Council. Beyond Productivity: Information Technol-
ogy, Innovation and Creativity. National Academy Press, Washington,
D.C., 2003.

9. Powell, A., and Moore, J.E. The focus of research in end user com-
puting: Where have we come since the 1980s? Journal of End User
Computing 14, 1 (2002), 3–22.

10. Ye, Y., and Kishida, K. Toward an understanding of the motivation of
open source software developers. In Proceedings of the 25th Interna-
tional Conference on Software Engineering (Portland OR, 2003) ACM,
NY, 419–429.

G. Fischer (gerhard@cs.colorado.edu) is a professor in the
Department of Computer Science and director of the Center for
Lifelong Learning and Design at the University of Colorado at
Boulder.
E. Giaccardi (giaccard@cs.colorado.edu) is a research associate in
the Center for Lifelong Learning and Design in the Department of
Computer Science at the University of Colorado at Boulder.
Y. Ye (yuwen@cs.colorado.edu) is a research associate in the Center
for Lifelong Learning and Design in the Department of Computer
Science at the University of Colorado at Boulder.
A.G. Sutcliffe (a.sutcliffe@co.umist.ac.uk) is a professor of
systems engineering and director of the Centre for Human Computer
Interface Design in the School of Informatics at the University of
Manchester, U.K.
N. Mehandjiev (mehandjiev@acm.org) is a senior lecturer in the
School of Informatics at the University of Manchester, U.K.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2004 ACM 0001-0782/04/0900 $5.00

c

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 37

