
Though there have been advances in end-user programming,* complex
applications still need professional developers. This inspired look at the
future of creating complex software explores the shift from programming
environments to design environments, discussing environments that help
developers satisfy end-users’ cognitive needs and help deal with contextual
issues such as the aesthetic, practical, and social properties of the application
and the users. A strong case is made that design environments will need to
provide robust support for communication
between developers and end users.

COMMUNICATIONS OF THE ACM June 1995/Vol. 38, No. 6 65

From Programming Environments to
Environments for Designing

T E R R Y W I N O G R A D

As the field of programming has matured over the
years, attention has shifted from the program to the
programmer—from the logical and computational
structure of algorithms to the cognitive structures of
the people who produce them. Innovations such as
interactive programming environments, object-orient-
ed programming, and visual programming have not
been driven by considerations of algorithm efficiency

or formal program verification, but by the ongoing
drive to increase the programmer’s effectiveness in
understanding, generating, and modifying code.

This special section of Communications clearly
reflects this shift of emphasis from machines to peo-
ple, exploring the cognitive aspects of program-
ming languages and environments. This article
moves to broaden the view still further: from pro-
gramming to design. It does not focus on cognition
or on programming, but on the wider picture of
software design and the larger environment, which

*See B. Nardi’s A Small Matter of Programming: Perspectives on End-User Com-
puting, MIT Press, 1993; and Watch What I Do: Programming By Demonstration,
by A. Cypher, Ed., MIT Press, 1993.

goes beyond the standard tools of the program-
mer’s trade.

The first part of this article portrays the evolving
field of software design, and its relationships to the
traditions of programming, analysis, and design that
have served the computer field throughout its history.

The second part relates the concerns that are high-
lighted in software design to traditional approaches in
programming and programming environments. It
draws analogies between four specific aspects of cur-
rent programming environments and four corre-
sponding aspects of environments for software design.
As with most analogies, the results are intended to be
suggestive, not rigorous. Starting with the cognitive
aspects of well-understood programming tools, we can
get insights into the demands for an environment that
will support the ongoing development of computer
software in a rapidly changing industry.

Technological Maturity
In his widely read Software Design Manifesto a few years
ago [8], Mitchell Kapor bemoaned the fact that
“Despite the enormous outward success of personal
computers, the daily experience of using computers
far too often is still fraught with difficulty, pain, and
barriers for most people….The lack of usability of
software and poor design of programs is the secret
shame of the industry.”

These are strong words to throw into the face of a
multi-billion dollar industry that by all standard mea-
sures must be doing things right. But Kapor is highly
respected as the founder of Lotus Software and the
designer of Lotus 1-2-3, the “killer app” that gave a
major impetus to the whole microcomputer industry.
His concerns have resonance among many people
who work with software. Although the unprecedent-
ed power of computing systems makes them highly
useful, there is a big gap between what we see in most
products today and what could be done to make
them really usable. This becomes more pressing as
we begin to reach beyond the current applications to
new audiences and new ways of taking advantage of
computation in people’s lives.

In the last few decades the computing profession
has matured from its early days, when ingenuity was
required at every turn to make programs work at all.
Today we are part of a major industry in which the
expectations for successful programming constantly
increase. Software designers today have the opportu-
nity (and necessity) of moving to a broader view of

what they need to achieve, because of the tremen-
dous successes of computing.

We are now entering a new phase of computer
product development, which can be understood as a
step in a history of technological maturity that has
been repeated for many new technologies, such as
the radio, the automobile, and the telephone:

Phase 1) Technology-driven. In the first phase, a new
technology is difficult to employ, its benefits are not
yet obvious, and its appeal is mainly to those who are
fascinated with it for its own sake—the “early
adopters.” We find clubs of enthusiasts who love to
share stories about how they fought the difficulties
and overcame them. The general public is seen as not
having sufficient understanding or merit to really use
the new inventions. Ham radio is a good example of
a technology that was adopted by a small but dedicat-
ed group in the technology-driven stage. In the same
vein, the legends of Silicon Valley include many sto-
ries of the early computer days and the brave pio-
neers who tackled the Altair or the Osborne.

Phase 2) Productivity-driven. In the second phase, the
economic benefits of using a technology are devel-
oped to the point where people in industry and busi-
ness will adopt it for practical uses. The measure is in
the bottom line—not whether the technology is fasci-
nating or easy to use, but whether it can be shown (or
at least believed) to produce greater efficiency, pro-
ductivity, and profits. The use of radios for truck and
taxi dispatch, police, and military communication
falls into this class, as do most of the major micro-
computer applications sold today. Spreadsheets,
word processors, databases, desktop publishing, and
a host of other applications have been sold as tools to
increase the productivity and competitiveness of com-
panies that buy and use them. Design considerations
are measured primarily in the realm of cost-effective-
ness. If better design can speed up use, cut training
time, or add to efficiency in another similar way, then
it is important. If it cannot produce a measurable dif-
ference in one of these dimensions, then it is a “frill.”

Phase 3) Appeal-driven. In the third phase, a maturing
technology reaches a wide audience of “discretionary
users” who choose it because it satisfies some need or
urge. The emphasis is not on measurable cost/bene-
fit analyses, but on whether it is likable, beautiful, sat-
isfying, or exciting. The market attractiveness of a

66 June 1995/Vol. 38, No. 6 COMMUNICATIONS OF THE ACM

Just what is software design? How does it
differ from programming, software engineering, software

architecture, human factors, or any of the other labels that
have been applied to the activities around creating computers

and the programs with which people interact?

product rests on a mixture of its functionality, its
emotional appeal, fashion trends and individual
engagement. CB radio and cellular phones for per-
sonal use are examples of radio technology in this
third product phase. Computer games have been
there since the beginning, and an increasing portion
of computer use is shifting to the consumer end of
the spectrum. The huge new markets of the
future—the successors to the productivity markets
conquered by IBM and Microsoft in the past—will be
in this new consumer arena, responsive to different
dimensions of human need.

Software design that focuses on the user, not on
the mechanisms, is moving to center stage.

The Movement toward Software Design
“Software design” has become a slogan for the emerg-
ing shift of perspective, away from what the comput-
er does, toward the experiences of the people who
use it. From this perspective, the task of those who
create new software is to design the interaction, not
to design the program. Although the difference may
be subtle (good applications programmers have
always paid some attention to designing the interac-
tion), many people are feeling the need to make the
distinction by creating new professional identities
and new affiliations. Some notable recent examples:

• In 1993, a professional organization named The
Association for Software Design (ASD), was found-
ed with the mission to “transform and elevate the
status and quality of software design as an activity.”
It already has chapters in several locations around
the U.S. and is initiating a program of educational
activities.

• In 1994, a publication named Interactions was
founded by the Association for Computing
Machinery, in conjunction with the ASD and
SIGCHI, the ACM special interest group on Com-
puter-Human Interaction. In the inaugural issue,
the editors stated, “We seem to have moved well
beyond the idea that making a computer ‘useful’ is
simply to design a good interface between ‘man
and machine.’ Our ideas have evolved to the point
where the richness of human experience comes to
the foreground and computing sits in the back-
ground in the service of these experiences.” [18].

• The entire first 1994 issue of the journal Human
Computer Interaction (the primary academic journal
in the field) was devoted to a dialog around an

article by John Seely Brown and Paul Duguid on
the role of context in design [3]. The editor said,
“We can look at the development of the field of
human-computer interaction as an evolution of
what we in the field of HCI consider to be the sig-
nificant aspects of context for computer-based arti-
facts.” [11].

• At the CHI94 SIGCHI conference, Mitchell Kapor
gave the keynote address, in which he argued for
the primacy of design as an approach to HCI. The
conference offered an unprecedented number of
papers and sessions devoted to design issues. The
1995 conference instituted a new section called
“design briefings,” which are “specifically intended
to provide increased exposure to user interface
design and to practical user interface work. They
involve the presentation of notable designs and a
discussion of how these designs came to be.”

• In August 1995 the first Symposium on Designing
Interactive Systems will be sponsored by ACM
SIGCHI, IEEE, and ASD. The call for participation
says, “The time is ripe to address designing as a
coherent activity—technical, cognitive, social,
organizational, and cultural. The goal is to come
to a better understanding of how designing works
in practice and how we can improve it.”

What is Software Design?
It is evident that software design is coming into
prominence. But that should give us a moment’s
pause. Just what is software design? How does it differ
from programming, software engineering, software
architecture, human factors, or any of the other
labels that have been applied to the activities around
creating computers and the programs with which
people interact? How does it relate to other fields
that call themselves “design,” such as industrial
design, graphic design, urban design, and even fash-
ion design? It is easy to make a new label. The real
work is in creating a change in perspective that gives
new directions and ideas.

The education of computer professionals has gen-
erally concentrated on understanding the nature of
computational devices and the engineering that
makes them behave as the builder intends. The focus
is on the things being designed—the devices and pro-
grams and the parts that make them up. The goal is
to fully implement a specified functionality in a man-
ner that is robust, reliable, and efficient. When a soft-
ware engineer says that a piece of software “works,”

COMMUNICATIONS OF THE ACM June 1995/Vol. 38, No. 6 67

Environments for Designing

In order to design software that really works we need to
move from a constructor’s-eye-view to a designer’s-eye-view,

a view that takes the system, the users,
and the situation of use all together

as a starting point.

he or she typically means that it is robust, reliable,
and meets its functional specification. These con-
cerns are indeed important. A designer ignores them
at the risk of disaster.

But this inward-looking perspective with its
emphasis on function and construction is one-sided.
In order to design software that really works we need
to move from a constructor’s-eye-view to a designer’s-
eye-view, a view that takes the system, the users, and
the situation of use all together as a starting point.
When a designer says that something “works” (e.g., a
book cover layout or a design for a housing complex)
the sense is much broader —it works for people in a
context of values and needs, to produce quality
results and a satisfying experience. The key to this
shift of perspective is in turning our attention to the
larger context in which the object of design resides.

Traditional software engineering has dealt with
context in an operational sense, relating a program
to the operating systems, networks, programming
interfaces and the like which will surround its opera-
tion. Software engineering techniques are geared to
expand the possibilities for a program to be modi-
fied, ported to other systems, extended to new func-
tionalities and adapted by users over a lifetime of use.
But the focus is always on the mechanisms, not the
human situations in which they will be embedded.

The perspective of software design shifts from the
“outside-looking-in” focus on mechanisms to an
“inside-looking-out” focus on people and their situa-
tions: how people experience software; what they do
with it; and the larger situation in which they
encounter it (see [23] for a number of current per-
spectives).

Environments for Software Design
The development of programming environments was
an important step forward in software engineering. A
good environment can embody and facilitate the
principles and practices
that make program-
ming more productive.
It brings the program-
mer’s activities into
focus along with the
activity of the program
being produced.

In an analogous way,
we can better under-
stand the user-oriented
view of software design
by looking at what
might constitute a “soft-
ware design environ-
ment.” In a traditional
programming environ-
ment, the objects of
interest are programs,
and the programmer’s
tools are designed to

operate on various representations of those pro-
grams. The software design environment is con-
cerned with designing the interactions, and works
with a broader array of representations, including
different kinds of conceptual models, mockups, sce-
narios, storyboards, and prototypes. The design
methods reach outside of the workstation to include
the setting and the thinking of the people who will
use the software.

The activities of a software designer include the
traditional activities of software engineering and pro-
gramming, such as specification writing, coding, and
debugging, along with the user-focused design activi-
ties emphasized in this article. Giving traditional pro-
gramming concerns short shrift in the sections that
follow does not imply that they are superfluous or
that environments to facilitate them are unnecessary.
The emphasis here is on developing our understand-
ing of the additional activities that go on around and
through them.

To highlight the software design perspective, four
current topics of focus in programming environ-
ments will be examined. The analogous issues from
the software design point of view are outlined in
Table 1 and explained in the following sections. Of
course, as with all analogies, there isn’t a perfect fit,
but the parallels can help elucidate the motivations
and criteria for new design environments.

Responsive Prototyping Media
Interactive programming
Responsive prototyping media
Modern interactive programming environments
emphasize quick turnaround—the ability of a pro-
grammer to try something out, see what it does,
make changes, and try again in a tightly coupled
cycle. In this activity, the nature of the programming
language and environment makes a large differ-
ence—perhaps as large as the difference between

sculpting in clay and
sculpting in stone. The
ability to quickly shape
and reshape requires a
capacity for turning an
unarticulated idea into
a working object quick-
ly enough to be able to
change it, listen to it,
even throw it out and
go on to another.

This kind of “reflec-
tive conversation with
the materials” (see
[19] for an excellent
analysis of the nature
of design activities, in
which Schön intro-
duces this term), is a
key to effective design
and is even more

68 June 1995/Vol. 38, No. 6 COMMUNICATIONS OF THE ACM

Table 1. In expanding from programming environ-
ments to environments for design, there are suggestive
correspondences between current techniques and
what is needed for user-oriented software design.

Programming Environments for
Environments Software Design

Interactive Responsive
programming prototyping media

Specifications User conceptual models

Reusable code Design languages

Interactive debugging Participatory design

important for the interaction-intensive programs
that dominate today’s software world. Both the
interface and underlying functionality of the appli-
cation are incrementally designed through interac-
tion with the intended users. Both user and designer
need to be able to visualize what the program will be
like and what can be done with it, even before it is
programmed.

Abstract representations, such as written descrip-
tions, flow charts, and object class hierarchies cannot
provide a grounded understanding. In the past few
years, a number of techniques have been developed
for initiating a dialogue with the user (and with
designers) before writing program code, through
mockups, storyboards, scenarios, and prototypes [10,
12]. In classical engineering practice, a prototype has
been a kind of laboratory test, taking the concept for
a device and demonstrating that a simplified version
of it could be made to work. In current design prac-
tice, prototyping is primarily a vehicle for exploration
and communication. Prototypes not only give feed-
back to the designers, but also serve as an essential
medium for information, interaction, integration,
and collaboration. The emphasis is on quickly pro-
viding an artifact that can be a concrete vehicle for
letting the users (and the designers) see both possi-
bilities and problems with the proposed design.

The key element isn’t the accuracy or thorough-
ness of the prototype, but the communicative role it
plays, both in the designer’s interaction with the
materials and the user’s interaction with the design-
er. A traditional programming environment empha-
sizes getting the prototype to do the right things, a
design perspective emphasizes getting it to commu-
nicate. A software design environment needs to sup-
port a variety of prototyping levels, suitable for
different projects and different phases of a project,
each making use of different tools.

Rough Hand Sketches and Scenarios. The initial step in
visualization is to get something that has enough of
the general look to suggest the functionality and
interaction to those who see it and talk about it. This
requires little in the way of technology. Poster board
and marker pens may be all that are needed, and the
relevant skills lie in being able to quickly sketch a
rough vision, not a polished piece of art. By working
with a sequence of sketches, a designer can explore a
large number of possibilities for a program—not just
its look, but its functionality. The sketches serve as a
communication vehicle for users to envision new uses
for a piece of software, and for giving insight into how
that software will actually work in their situations.

Low-fidelity Prototypes (Wizard of Oz). Moving beyond
static sketches, a number of techniques have been
developed for giving the user a sense of the dynamics
of a program without having to build a functional ver-
sion of it. The simplest techniques can be imple-
mented with paper technologies such as post-its and

transparent overlays, manipulated by a human
machine surrogate who can pop up and pull down
menus, switch window contents, and so on. Even a
rough attempt at duplicating the dynamics of the pro-
gram being designed can give a surprising amount of
new insight into what will work and what will falter.

T
he fact that these prototypes don’t
feel like a real product isn’t a
problem. In fact, in many design
settings it is often important to
make sure that prototypes at vari-
ous levels have a feeling of rough-
ness—even to the point of using
scanned pencil sketches in place

of more polished bitmap art. A user faced with some-
thing that has the feel of a rough sketch is more like-
ly to respond with substantive suggestions. A designer
is more likely to see strikingly different possibilities. A
highly polished prototype—even if it is only a first
attempt at the functionality and interface struc-
ture—fosters a sense of finality that tends to inspire
only suggestions for minor improvements and fur-
ther visual niceties.

Programmed Facades. “Potemkin village” prototypes
can be built on the computer using prototyping
tools such as Hypercard, Supercard, Macromind
Director, and Toolbook. An interface produced in
these languages can present a facade which appears
on the surface to be a real program, and which may
mimic some illustrative aspects of the functioning of
the intended program. But this facade is often sup-
ported only by an illusion. The underlying logic of
the prototype may duplicate only a tiny fraction of
what is intended for the finished design, and it may
work for only a carefully selected set of possible
interaction sequences.

Even though the programmers know that much is
missing underneath, the effect in communicating to
others can be tremendous. They get a feel for the
program that is impossible to get from looking at sta-
tic screens, and they will be able to see many of its
flaws and its new possibilities. In fact designers have
sometimes found that by showing this kind of proto-
type to users or managers they create false expecta-
tions—it looks so good that it seems as if the real
thing should be only a short step away. Usually there
is a lot more to be designed!

Prototype-oriented Languages. There is no clear divid-
ing line between facade-building languages and full-
fledged programming languages that are designed to
support the prototyping process (often at the
expense of traditional computer language concerns,
such as execution speed and economy of storage).
Environments such as Hypercard, Smalltalk, and
Visual Basic include interface builders that make it
especially easy to design the screens that people will
see and to attach working code to the visual elements.

COMMUNICATIONS OF THE ACM June 1995/Vol. 38, No. 6 69

Environments for Designing

Although these languages are sometimes thought of
as the basis for throwaway demonstration prototypes,
it has often turned out that for the specific intended
use, a program written in one of these languages will
be adequate for the job, and does not need to be
reprogrammed into a “real” programming language.
When deciding how much programming effort
should go into a prototype, it is important for the
designer to look at these trade-offs and see whether it
should be thought of as a throwaway, or be written
with the expectation that it could be the basis for the
final implementation.

The full design environment is a mix-and-match of
all of these prototyping levels. Some projects lend
themselves only to one of them. Some projects will
best use a mix of all. The goal is to use the level(s)
that will best facilitate the two primary interactions—
designer with design and user with designer.

Much effort has gone into the design of prototyp-
ing systems that can increase the software designer’s

fluidity of iterative design. This same kind of creativ-
ity acceleration is produced in other design disci-
plines in what Michael Schrage [20] calls a “culture
of prototyping.” He points out that different organi-
zations develop and use prototypes in different ways.
In some cases a prototype is a rough sketch to be
passed around for quick comment and change. In
others it is a carefully crafted selling aid, designed to
get approval from a manager, customer, or commit-
tee that will decide on the future of a project. Some
media (like the clay models used in automotive
design) lead to resource-intensive prototypes in
which a highly finished look leads to assessments of
quality. Others, such as carved foam, lead to rough-
cut prototypes whose visual and material qualities
suggest their provisional status and openness to
being changed.

As the field of software design develops, we too are
developing not one but many cultures of prototyping,
and design environments to facilitate them. We are
learning which of them is most appropriate to a given
organization and task.

User Conceptual Models
Specifications
User conceptual models
A key element of many software engineering method-
ologies is the creation of abstract specifications.
These characterize the desired system at a higher
level than the operational code, and they can there-

fore be more easily understood, described, and
manipulated. There are, of course, many controver-
sies about the values and limitations of different spec-
ification formalisms and methodologies, but we will
not address those here.

The analogy we want to draw to software design is
with the “conceptual model” [14] or “virtuality” that
lies behind the interface seen and manipulated by
the user. One of the key differences between soft-
ware and most other kinds of artifacts that people
design is the freedom of the designer to produce a
world of objects, properties, and actions that exist
entirely within the created domain. The comprehen-
sible but arbitrary consistency of a virtuality is most
immediately evident in computer games, which gain
tremendous appeal through the ability of the player
to engage in the virtual world in earnest, exploring
the vast reaches of space, fighting off the villains,
finding the treasures, or dealing with whatever the
designer creates. But there is also a world created in

a desktop interface, a spreadsheet, or an information
network. We are familiar today with the virtuality of
the graphical user interface with its windows, icons,
folders and the like. Although these are loosely
grounded in analogies with objects in our everyday
physical world, they exist in a unique world of their
own, with its special physics and potential for action
by the user.

The literature on interface design uses a number
of terms for the world created by the software, such as
Conceptual Model, Cognitive Model, User Data
Model, User’s Model, Interface Metaphor, User Illu-
sion, Virtuality and Ontology. What these terms all
share is the recognition that the designer and user
are engaged in creating a world, not in simply bring-
ing to the computer what existed outside of it.

In early computer program development, the vir-
tual world was usually a side effect of the implemen-
tation. Users of Unix, for example, work in a world
of files, directories, and links (symbolic and direct)
because those were elements of the underlying sys-
tem implementation. This direct mapping onto the
implementation model works well for certain kinds
of applications and certain kinds of users, but in gen-
eral, the way of dividing up the world that works best
for the computer is not the same as the one that will
work well for human understanding and action.

In the development of the Xerox STAR in the
early 1970s, designers began to directly confront the
question of building a clear and understandable con-

70 June 1995/Vol. 38, No. 6 COMMUNICATIONS OF THE ACM

As the field of software design develops, we too are
developing not one but many cultures of
prototyping, and design environments to

facilitate them.

ceptual model [7]. Although the STAR did not have
the commercial success of its later derivatives, it was
the original model for consistent integration of now-
familiar mechanisms for windows, icons, dialog
boxes, drawings, and on-screen formatted text. Its
interface innovations have been the basis for a whole
generation of systems, including the Macintosh,
Microsoft Windows, and Motif.

Rather than first deciding what the system would
do, then figuring out how to produce interfaces, the
developers engaged psychologists and designers from
the beginning in an extensive set of storyboards,
mockups, prototypes and user tests to see what would
work, and how. In doing this, they recognized that
the most important thing in designing properly was
the users’ conceptual model, and that everything else
should be subordinated to making that model clear,
obvious and substantial. Users could manipulate doc-
uments by moving and acting on the icons that
appeared on the screen. But, of course, the icon isn’t
the document. The interface could just as well have
used pinwheels or little text fragments, and could
have let the user operate on them with different phys-
ical devices, commands, and visual effects. The key
part of the design was the creation of a coherent and
consistent world, or virtuality, with an understand-
able underlying structure or model.

Tools for designing virtualities have often been
based on object-oriented models, in which the
object classes reflect the user’s perspective rather
than being driven by implementation concerns. In
fact, object-oriented programming began with the
simulation language SIMULA, which started from
the standpoint of representing and simulating real
world objects. With later developments, such as
Smalltalk and its descendants, designers realized
that many of the objects they were creating did not
reflect existence outside the computer, but had
lives of their own in the virtual world with which
users interacted. It is notable that current method-
ologies talk about object-oriented design rather
than object-oriented programming. This is not to
say that the only methods for conceptual design are
object-oriented, but they have in common a con-
cern with defining and describing the objects, prop-
erties, and operations that the user interacts with,
rather than the algorithms or representations used
by the computer.

Design Languages
Reusable code
Design languages
One of the major efforts in software engineering
today is to find better tools for reusability. Object-ori-
ented software, component software, linked libraries,
and many other mechanisms are being explored to
enable significant elements of a program to be
rearranged and reused in others. In the design world,
this kind of borrowing has always been standard, and
is technically easier. The concept for a widget such as

a tool bar, or an interaction style like a multiple selec-
tion can be copied from one application to another
without technical difficulty.

A significant part of the larger design environment
is the collection of design elements that have been pre-
viously used and are standard in a software culture. It
doesn’t take deep analysis to see that all of the current
GUI interfaces draw on a basic vocabulary and interac-
tion style that was pioneered in the STAR and then the
Macintosh. In fact the great success of the Macintosh
can be attributed to a large degree to the efforts of the
early Apple “evangelists” to encourage applications
developers to use a common design vocabulary. They
facilitated this by publishing explicit guidelines [2], by
providing tools for all of the standard elements
(menus, dialog boxes, window management, etc.) and
by working directly with developers. They convinced
the developers that they would gain more from pro-
moting the popularity of the Mac platform by making
it seem easy to use through uniformity, rather than
through having minor differences (improvements)
unique to their interface.

The Role of Design Languages. The Macintosh was the
first open platform to publicize a design language to
use in designing software interaction (the STAR had
a carefully articulated design language, but all of the
applications were developed by Xerox). A number of
design theorists have pointed out how the use of con-
sistent and understandable language by the designer
makes it possible to communicate functionality to
users in a natural and unintrusive way [17].

Whenever people construct objects, they draw on a
background of shared design language in their com-
munity and culture. Even something as apparently
simple as a door is built to communicate to the user
through convention. A door with a flat plate near
shoulder level says, “push me!” One with a round
knob says, “turn here”, and one with a fixed graspable
handle says, “pull.” Although these messages are relat-
ed to the underlying ability to perform the acts, they
are also a matter of convention and learning, as every
tourist finds out in trying to deal with everyday objects
in an unfamiliar culture. We learn such languages
from our everyday experience, and when a designer
defies them, the result is confusion [15].

Design languages can be more or less natural,
more or less intuitive (comprehensible to the user on
the basis of previous expectations). As a simple exam-
ple, a slider that moves horizontally can be used to
control a dimmer on a light. If it were wired to make
the light brighter when moved to the left and dimmer
when moved to the right, it would confuse most users
from a European culture. There are even some con-
ceptual mappings and metaphors such as “up is more”
that cut across all kinds of phenomena and often even
across languages and cultures [9]. The designer of an
artifact for interaction needs to harness these general
cognitive resources and languages to the specifics of
the particular interface at hand.

COMMUNICATIONS OF THE ACM June 1995/Vol. 38, No. 6 71

Environments for Designing

Just as a modern programming environment pro-
vides the programmer with a base language and
libraries of common program elements, the design
environment is populated by the collection of design
languages on which the designer can draw in creating
something new. This is in spite of all the lawsuits and
concerns about look and feel infringement. The
designer needs to be well versed in all of the common
design languages and elements that users will
encounter, either to employ them, or to avoid them
if economic and legal concerns require that.

Genres/Styles. It is important to recognize that there
isn’t a best design language for interacting with com-
puters, just as there isn’t a best kind of building, or a
best kind of literature. Every piece of software con-
veys a “genre,” with its own language of expectations
and interpretations. We are familiar with genres in
literature (the Greek tragedy, the Victorian novel, the
pulp romance), and architecture (the Greek temple,
the Gothic cathedral, the post-modern office com-
plex). The concept is equally applicable in computer
software with the spreadsheet, the video game, and
the word processor. The designer working within a
background of experience in these genres can effec-
tively use the expectations that go with them to situ-
ate the user in previous experiences and to move
beyond them [3]. The power of genres is clear if we
try to imagine a spreadsheet with a joystick and life-
like explosive sound effects whenever a formula is
entered into a cell, or a word processor that requires
the user to assemble words by chasing letters around
on the screen.

Of course, the genre can never be taken as the
boundary of what can be designed. Just as poets (and
even technical writers) will creatively bend language
to new purposes, the creative designer will mix, dis-
tort, and at times completely violate language conven-
tions for a desired effect. KidPix, a drawing program,
comes close to the purported counter-examples
above, bringing video game design language elements
(such as wacky sound effects and cartoon icons) into
a drawing program. For the intended audience of
young children, the mix is quite appealing. In effect,
KidPix has introduced a new language which is now
being duplicated in other products.

Participatory Design
Interactive debugging
Participatory design
All approaches to software engineering require a
form of testing. Some methodologies call for careful-
ly developed test suites and rigorous testing of com-
ponents before and after integration into a larger
program. As with the other issues addressed above,
testing takes on a more complex and broader mean-
ing for programs that do not just calculate a result
from a few inputs, but which enter into a dynamic
(and unpredictable) sequence of interactions with
users. There are standard practices in the software

industry for testing in use—alpha test, beta test,
usability laboratories, and the like [13].

An environment for software design includes the
tools for testing: both the technical tools (e.g., the
observational technology of usability labs) and social
tools (the people and practices required to identify,
recruit and interact with testers at different levels and
points in the design process). Going further, the
process of interaction does not follow the classical
“generate and test” where the designer develops a
working program, then sends it off to users to test.
The dialogue with users can begin with the first
sketch of an idea and continue through all the stages
in which the functionality as well as the interface is
determined. The debugging starts with the ideas, not
with the code. The environment for this dialog goes
well beyond the workstations and files of the tradi-
tional programming environment [12, 21].

Expanding the Debugging Environment. There are limits
to what can be learned about software while working
in the programming office or the software testing
laboratory. Some aspects, such as the speed and con-
venience of different interface mechanisms, can be
tested to a high degree of accuracy. But others, often
much more important, don’t show up unless the user
is in the natural context in which the system will be
employed. What happens when the phone rings in
the middle of an activity with the system? What if the
person at the next desk is using a different word
processor and you need to share a document? A
designer who creates a system that works in idealized
conditions may end up blaming (and alienating) the
user when those ideal conditions don’t exist in the
chaotic realities of his or her life. A designer who can
understand and anticipate the chaotic realities can
produce a new level of usability.

T
o get people (both designers and
users) to think about these inter-
actions early in the design
process, when they can most easi-
ly be taken into account, it is often
important to interact in the actual
setting where the final product
will be situated. The insights for

copier design that came from extensive field visits to
see where and how the copiers were really used, and
by whom, are described in [17]. Much of the success
of the Quicken program for personal finance is
attributed to an explicit “follow the user home” poli-
cy, in which the designers worked with people who
purchased early copies to see what actually happened
when they tried to install, use and integrate them into
their everyday practices.

In the area of office software, this problem has
been addressed through a method called “contextu-
al inquiry,” [6] in which the designer enters into the
situated context of the user to learn about possibili-
ties. An environment for the prototyping and con-

72 June 1995/Vol. 38, No. 6 COMMUNICATIONS OF THE ACM

ceptual design tools discussed needs to extend
beyond the walls of the software organization to
engage users in the process.

Use in Organizations. When we think of a piece of soft-
ware on a personal computer, we tend to visualize the
“user” as a person—an individual sitting in front of the
machine. On the other hand, when we think of a tra-
ditional mainframe-based system, such as airline reser-
vation system, inventory control system, or payroll
system, there isn’t a single prototypical individual user,
but an organizational user composed of many people
with different roles and functions. This distinction

between personal and mainframe software is blurring
in today’s age of distributed client-server software,
interconnected information networks, and groupware.
The design of a computer application, regardless of its
specific details, is intertwined with the design of the
organizational interactions that surround its use.

Over the past few years, a number of approaches
have emerged for looking at how computer system
design interacts with organizational design and activ-
ities. Conferences, journals, and books have
appeared on computer-supported cooperative work
(CSCW), groupware, and organizational computing
[5]. Of course, since the beginning of computing,
people have used computers in group and organiza-
tional settings. The shift lies in asking the designer to
focus on the way that design will affect people in
those settings.

One interesting indicator is in the change of ter-
minology used by information systems professionals.
In earlier days they talked about the importance of
“systems analysis”—getting a model of the organiza-
tional system before designing the information struc-
tures for it. Today we hear more in the management
and information technology magazines about “busi-
ness process re-engineering.” The structures and
practices of the business are not taken as a fixed envi-
ronment to be analyzed and adjusted to, but as a
domain of potential change and new design [22].

With this shift there has been increasing interest
in what can be offered by those who bring lessons
from systematic studies of the nature and structure
of work to software and systems design. Anthropol-
ogists, ethnographers, sociologists, organizational
theorists, and researchers in other disciplines have
become a part of the interdisciplinary teams that
approach the design of systems from a work-orient-
ed perspective [4].

Co-evolution of Practices, Tools, and Social Systems. The
final extension of the dialogue with users is that the
design cycle does not start and end with a product.
The overall environment of computer use is a con-
stant co-evolution in which new tools lead to new
practices and ways of doing business, which in turn
create problems and possibilities for technical inno-
vation. We tend to think of the designers and pro-
grammers in the development laboratory as the
primary part of the design environment, but in this
larger picture, the people in customer support are
also central participants in the dialog. Many compa-
nies are beginning to integrate this critical source of

feedback into the design cycle explicitly; some com-
panies even require that system designers spend a sig-
nificant amount of time in a help-desk role, to see the
consequences of their designs in actual use.

The Designers’ Organizational Environments. Many of the
design activities outlined in the preceding sections
have been advocated for over a decade and yet are far
from standard practice in the industry. The picture is
oversimplified in its implicit notion of a designer or
design team, working in concert to produce software.
In fact, the software organization contains many dis-
jointed parts concerned with software design, from
marketing to interface design and development, to
customer support, training, and documentation. The
coordination of these often far-flung groups with
diverse interests and responsibilities makes it a very dif-
ferent matter to put into real practice the theoretical
practices that go into our design environment [16]. In
many cases, the most significant elements in creating a
productive environment for software design are the
organizational structures and changes that need to be
made in order to support the communication and flow
of activities that constitutes software design.

Conclusion
The environment for the designer goes well beyond
the traditional bounds of programming environ-
ments. In fact the preceding descriptions may feel to
many readers like a boundless extension—opening
up the concerns of the designer to so many issues and
methods that nothing can ever get done. Of course,
not every environment or every piece of software
requires explicit attention to all the dimensions of
design. A project to port an email interface from one
window system to another may require careful atten-
tion to design languages, but it can take for granted

COMMUNICATIONS OF THE ACM June 1995/Vol. 38, No. 6 73

Environments for Designing

Many of the design activities outlined
in the preceding sections have been

advocated for over a decade and yet are far
from standard practice in the industry.

If you would like to pursue cognition and software development in more
depth, the proceedings from one or more of the five workshops on Empirical
Studies of Programmers (published as the Ablex Empirical Studies of Pro-
grammers Series, Norwood, NJ) are good sources of information. The sixth
workshop will be held in Washington, DC in January, 1996. ACM has sev-
eral special interest groups (SIGs) pertaining to this topic, with computer-
human interaction (SIGCHI) the broadest in scope. You might also join the
international Psychology of Programming Interest Group (PPIG), an infor-
mal group that has a mailing list and a newsletter. Its seventh annual
workshop will be in Edinburgh, also in January, 1996. Join the PPIG mail-
ing list by sending a request to ppig-request@ee.surrey.ac.uk, and read the
PPIG Web page at http://www.u-net.com/ppig/.

most of the initial analysis of the setting and patterns
of use. An attempt to create a totally novel kind of
application may require situated observation of what
people do and how their lives might be changed by a
new technology, but it may be the kind of application
that doesn’t require careful study of how the new soft-
ware will modify practices of a group.

Taking a broad view will prompt awareness—aware-
ness on the part of software designers of the issues
they need to think about, and awareness on the part
of those who create environments (computational,
physical, and social) for those designers of the objects
and methods they need to support. As with all tools,
there is no magic—the environment does not pro-
duce the result. But a comprehensive and thoughtful-
ly constructed environment can facilitate the human
creativity that is always at the core of design.

References
1. Adler, P. and Winograd, T., Eds. Usability: Turning Technologies

into Tools. Oxford, 1992.
2. Apple Computer. Human Interface Guidelines: The Apple Desktop

Interface. Addison-Wesley, Reading, Mass., 1987
3. Brown, J. and Duguid, P. Borderline issues: Social and material

aspects of design. Human-Computer Interaction 9, 1 (1994), 3–36.
4. Greenbaum, J., and Kyng, M. Design at Work: Cooperative Design

of Computer Systems. Erlbaum, NJ, 1991.
5. Grudin, J., Ed. Special issue on Collaborative Computing. Com-

mun. ACM 34, 12 (Dec. 1991), 30–34.
6. Holtzblatt, K., and Jones, M. Contextual inquiry: A participato-

ry technique for system design. In D. Schuler and A. Namioka,
Eds., Participatory Design: Principles and Practices. Erlbaum., NJ,
1993, 177–210.

7. Johnson, J., Roberts, T., Verplank, W., Smith, D. C., Irby, C.,
Beard, M., and Mackey, K. Xerox Star, a retrospective.z IEEE
Comput. (Sept. 1989), 11–26.

8. Kapor, M. A software design manifesto: Time for a change. Dr.
Dobb’s Journal 172 (January 1991), 62–68.

9. Lakoff, G., and Johnson, M. Metaphors We Live By. University of
Chicago Press, Chicago, 1980.

10. Laurel, B. The Art of Human-Computer Interaction. Addison-Wes-
ley, Reading, Mass., 1990.

C

11. Moran, T. Introduction to the special issue on Context in
Design. Human-Computer Interaction 9, 1 (1994), 1–2.

12. Muller, M., and Kuhn, S., Eds. Special issue on participatory
design. Commun. ACM 36, 6 (June 1993), 24–28.

13. Nielsen, J. Usability Engineering. Academic Press, 1993.
14. Norman, D. Cognitive engineering. In D. Norman and S. Drap-

er, Eds., User Centered System Design: New Perspectives on Human-
Computer Interaction. Erlbaum, NJ, 1986, pp. 31–62.

15. Norman, D. The Design of Everyday Things. Basic Books, 1988.
16. Poltrock, S., and Grudin J., Organizational obstacles to inter-

face design and development: Two participant-observer stud-
ies. ACM Trans. Computer-Human Interaction 1, 1 (Mar. 1994),
52–80.

17. Rheinfrank, J., Hartman, W., and Wasserman, A. Design for
Usability: Crafting a strategy for the design of a new generation
of Xerox copiers. In P. Adler and T. Winograd, Eds., Usability:
Turning Technologies into Tools. Oxford, 1992, 15–40.

18. Rheinfrank, J., and Hefley, A. Reflections. Interactions 1, 1 (Jan.
1994), 88.

19. Schön, D. The Reflective Practitioner. Basic Books, 1983.
20. Schrage, M. The Culture(s) of Prototyping. Design Management

J. 4, 1 (Winter 1993), 55–56.
21. Schuler, D. and Namioka, A. Eds., Participatory Design: Principles

and Practices. Erlbaum, NJ, 1993.
22. Winograd, T. and Flores, F. Understanding Computers and Cogni-

tion: A New Foundation for Design. Addison-Wesley, Reading,
Mass., 1987.

23. Winograd, T., Ed. Designing Software Interactions. Addison-Wes-
ley, in press.

About the Author:
TERRY WINOGRAD is a professor of computer science at Stan-
ford University. Current research interests include human-com-
puter interaction, software design, and digital libraries. Author’s
Present Address: Stanford University Department of Computer
Science, Stanford, CA 94305-2140; email: winograd@cs.stanford.edu

Permission to copy without fee all or part of this material is granted provid-
ed that the copies are not made or distributed for direct commercial advan-
tage, the ACM copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© ACM 0002-0782/95/0600 $3.50

74 June 1995/Vol. 38, No. 6 COMMUNICATIONS OF THE ACM

