
End-User Software Engineering with Assertions
in the Spreadsheet Paradigm

Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg Rothelrmel, Jay Summet, Chris Wallace
Oregon State University, Corvallis, Oregon, 97331 USA

{burnett, cook, pendse, grother, summet, wallacch}@ cs.orst.edu

Abstract

There has been little research on end-user program
development beyond the activity of programming. Devising
ways to address additional activities related to end-user
program development may be critical, however, because
research shows that a large proportion of the programs
written by end users contain faults. Toward this end, we
have been working on ways to provide formal "software
engineering" methodologies to end-user programmers.
This paper describes an approach we have developed for
supporting assertions in end-user software, focusing on the
spreadsheet paradigm. We also report the results of a con-
trolled experiment, with 59 end-user subjects, to investi-
gate the usefulness of this approach. Our results show that
the end users were able to use the assertions to reason
about their spreadsheets, and that doing so was tied to
both greater correctness and greater efficiency.

1. In~oducfion

End-user programming has become a widespread
phenomenon. For example, end users create and modify
spreadsheets, they author web pages with links and com-
plex formatting specifications, and they create macros and
scripts. Although some of these programs are small, one-
shot calculations, many are much more serious, affecting
significant financial decisions and business transactions.
Two recent NSF workshops have determined that end-user
programming is in need of serious attention [5]. The
reasons are compelling. The number of end-user program-
mers in the U.S. alone is expected to reach 55 million by
2005, as compared to only 2.75 million professional
programmers [5]. Further, evidence abounds of the perva-
siveness of errors in the software that end users create [20],
with significant economic impact. In one single example, a
Texas oil and gas firm lost millions of dollars through
spreadsheet errors [19].

To address this problem, we have been researching
methods for helping end users create more reliable soft-
ware. Our approach brings aspects of theoretically sound
methodologies, explored previously within the professional
software engineering community, into the environments
end users use to create software. We term the concept
"end-user software engineering"; however, we do not

claim or attempt to turn end users into software engineers
or ask them learn traditional software engineering method-
ologies. Instead, the methodologies we employ aim to be
not only accessible, but also venfiably productive for end
users with little or no formal training in software
engineering.

Assertions in the form of preconditions, postconditions,
and invariants provide professional programmers with in-
creased ability to maintain and debug software. Assertions
provide attractive opportunities for adding rigor to end-user
programming for two reasons. First, the use of assertions
does not demand an "all or nothing" approach; it is pos-
sible to enter one or two assertions and gain some value,
without committing to entering a purportedly complete set
of assertions. Second, assertions provide a way to make
explicit a user 's mental model underlying a program,
essentially, integrating "specifications" with that program.
Such specifications, integrated into end-user programs,
could tap into a host of opportunities for harnessing other
software engineering methodologies, such as test suite im-
provement, specification-based test generation, automated
test oracle generation, or proofs of program properties.

We have developed an approach for supporting asser-
tions as a critical underpinning of our end-user software
engineering work. We have prototyped our approach in the
spreadsheet paradigm. Our assertions provide pre- and
postcondition Boolean expressions about the results of cell
formula execution. The approach supports a variety of
relations, as well as composition via logical "and" and
"or," in two concrete syntaxes. It is our hope that assertions
will enable the user to identify and correct faulty formulas.

In this paper, we first present our approach to integrat-
ing assertions into an environment whose goal is to support
end-user software engineering. We then use this environ-
ment to empirically explore the fundamental issues of
whether end users can use assertions in the context of an
end-user software engineering task, and whether and how
their doing so improves the correctness of their programs.

2. Assertions for end users

When creating a spreadsheet, the user has a mental
model of how it should operate. One approximation of this
model is the formulas they enter, but unfortunately these
formulas may contain inconsistencies or faults. These for-

0-7695-1877-X/03 $17.00 © 2003 IEFEE 93

mulas, however, are only one representation of the user's
model of the problem and its solution: they contain infor-
mation on how to generate the desired result, but do not
provide ways for the user to communicate other properties.
Traditionally, assertions in the form of preconditions, post-
conditions, and invariants have fulfilled this need for pro-
fessional programmers, providing a method for making
explicit the properties the programmers expect of their
program logic, to reason about the integrity of their logic,
and to catch exceptions. Our approach attempts to provide
these same advantages to end-user programmers.

For professional software developers, the only widely
used language that natively supports assertions is Eiffel
[15]. To allow programs in other languages to share at least
some of the benefits of assertions, methods to add support
for assertions to languages such as C, C++ and Awk have
been developed (e.g., [2, 29]). Applications of such asser-
tions to software engineering problems have proven
promising. For example, there has been research on deriv-
ing runtime consistency checks for Ada programs [23, 25].
Rosenblum has shown that these assertions can be effective
at detecting runtime errors [22]. However, traditional ap-
proaches that employ assertions are aimed at professional
programmers, and are not geared toward end users.

2.1 An abstract syntax

As in the above approaches, our assertions are com-
posed of Boolean expressions, and reason about program
variables' values (spreadsheet cell values, in the spread-
sheet paradigm). Assertions are "owned" by a spreadsheet
cell. Cell X's assertion is the postcondition of X's formula.
X's postconditions are also preconditions to the formulas
of all other cells that reference X in their formulas, either
directly or transitively through a network of references.

To illustrate the amount of power we have chosen to
support with our assertions, we present them first via an
abstract syntax. An assertion on cell N is of the form:

(N, {and-assertions}), where:
each and-assertion is a set of or-assertions,
each or-assertion is a set of (unary-relation, value-

expression) and (binary-relation, value-expression-
pair) tuples,

each unary-relation ~ {=, <, <=, >, >=},
each binary-relation ~ {to-closed, to-open, to-openleft,

to-openright},
each value-expression is a valid formula expression in

the spreadsheet language,
each value-expression-pair is two value-expressions.
For example, an assertion denoted using this syntax as

(N, {{(to-closed, 10, 20), (= 3)}, {= X2}}) means that N
must either be between 10 and 20 or equal to 3; and must
also equal the value of cell X2.

This abstract syntax is powerful enough to support a
large subset of traditional assertions that reason about
values of program variables. We also plan to eventually
support inequality (~) as a unary relation. This operator

would be solely for convenience; it would not add power
given the relations already present, since ~ can be ex-
pressed as an or-assertion composing < with >. This ab-
stract syntax follows CNF (Conjunctive Normal Form):
each cell's collection of and-assertions, which in turn com-
pose or-assertions, is intended to evaluate to true, and
hence a spreadsheet 's assertion is s imp ly -an "and"
composition of all cells' assertions.

2.2 Concrete syntaxes for end users

The abstract syntax just presented is not likely to be
useful to end users. Thus, we have developed two concrete
syntaxes corresponding to it: one primarily graphical and
one textual. The user can work in either or both as desired.

The graphical concrete syntax, depicted in Figure 1,
supports all of the abstract syntax (but in the current pro-
totype implementation, value-expressions have been
implemented for only constants). The example is a repre-
sentation of (output_temp, {{(to-closed, 0, 100)}, {(to-
closed, 3.5556, 23.5556)}}). A thick dot is a data point in
an ordinal domain; it implements "=". The thick horizontal
lines are ranges in the domain, implementing "to-closed"
when connected to dots. A range with no lower (upper)
bound implements "<=" (">="). It is also possible to halve
a dot, which changes from closed ranges to open ranges,
"<=" to "<", and so on. Disconnected points and ranges
represent the or-assertions. Multiple assertions vertically in
the same window represent the and-assertions.

The textual concrete syntax, depicted in Figure 2, is
more compact, and supports the same operators as the
graphical syntax. Or-assertions are represented with
comma separators on the same line (not shown), while and-
assertions are represented as assertions stacked up on the

. 3 ? b J

~,,5558 ~:3~5558

Figure 1 : Two (conflicting) assertions "and"ed on
the same cell.

40 1~KI
, .L.%~ i

U_El~l',,,lidterm
Figure 2: Two assertions in the textual syntax.

94

same cell, as in Figure 2. There is also an "except"
modifier that supports the "open" versions of "to" (e.g., 0
to 10 except 10).

Our system does not use the term "assertion" in commu-
nicating with users. Instead, assertions are termed guards,
so named because they guard the correctness of the cells.
The user opens the guard tab above a cell to display the
assertion using the textual syntax, or double-clicks the tab
to open the graphical window. Although both syntaxes
represent assertions as points and ranges, note that points
and ranges, with the composition mechanisms just de-
scribed, are enough to express the entire abstract syntax.

Note that although "and" and "or" are represented, they
are not explicit operators in the syntaxes. This is a
deliberate choice, and is due to Pane et al.'s research,
which showed that end users are not successful at using
"and" and "or" explicitly as logical operators [18].

The textual concrete syntax we present here bears some
resemblance to recent work on English-like notations for
formal specifications. Although assertions and other forms
of specification such as property patterns [9] are usually
presented using rigorous mathematical notations or finite
state automata, there is work on expressing specifications
in more accessible notations (e.g., [16, 26]). For example,
Propel [26] is a multiple-view approach to properties that
includes an English-like representation.

A central difference between that work and ours is that
their properties and English-like syntax emphasize se-
quence. Our assertions have no temporal operators and
cannot express sequence. This is appropriate because
reasoning .about sequence is not a programmer
responsibility in declarative paradigms that focus on data
definition, such as the spreadsheet paradigm, in which se-
quence is automatically derived from data dependencies.

2.3 Assertion sources' potential impact

We currently support two sources of assertions. User
assertions are assertions that the user enters explicitly, one
of which appears in Figure 2 next to the stick figure.
System-generated assertions are assertions resulting from
propagating assertions through formulas in the direction of
dataflow (using straightforward logic and interval arith-
metic), one of which appears in the figure next to the com-
puter icon. (Details of propagation are described in [27].)

Other researchers have developed methods for generat-
ing program assertions without requiring programmer input
as a source. Daikon [10] generates invariant assertions by
extensive examination of a program's behavior over a large
test suite. DIDUCE [12] deduces invariant assertions and
uses them to check program correctness. DIDUCE has a
training phase, in which it considers all behaviors correct
and relaxes invariants to encompass them, and then a
checking phase, which reports violations to the invariants
inferred in the training phase. Raz et al.'s approach to se-
mantic anomaly detection [21] uses off-the-shelf unsuper-
vised learning and statistical techniques, including a
variant of Daikon, to infer invariants about incoming data

arriving from online data feeds, and their empirical work
shows effectiveness. Recent work that can be described as
inferring assertions related to correctness of end-user pro-
grams involves automatic detection of errors through out-
lier analysis [17]. This approach is similar in principle to
that of Raz et al., but has been developed in the domain of
programming-by-demonstration for text processing.

An advantage of these researchers' inferential ap-
proaches is that they can relieve the programmer of having
to conjure up and explicitly insert assertions. A disadvan-
tage is that these inferences must be "guessed," and some
of the guesses can be incorrect. The impact of incorrect
guesses on end users' trust and willingness to work with
assertions is an issue that requires exploration.

Because of multiple sources of assertions (currently
two, potentially more), our approach provides the follow-
ing three ways for assertions to potentially help users de-
tect faults: (1) there might be multiple assertions on the cell
that do not agree, termed an assertion conflict, (2) the
cell's value might not satisfy the cell's assertion(s), termed
a value violation, or (3) a system-generated assertion might
"look wrong" to the user. When any of these events occur,
there may be either a fault in the program (spreadsheet
formulas) or an error in the assertions.

2A Assertions in an end-user environment

An important difference between our approach to asser-
tions and more traditional approaches is that ours is a com-
ponent of an integrated set of software engineering features
designed particularly for end users. It is not a separate tool,
and a user need not use it in an "all or nothing" manner.
Instead, the user might enter a few assertions, immediately
see their effects on the formulas entered so far, and then
apply other forms of validation on other formulas. Feed-
back about assertions is integrated with the variables (cells)
to which they apply. For example, the assertions about cell
U_EffMidterm appear at the top of that cell, as already
shown in Figure 2. If the two assertions about cell
U_EffMidterm were in conflict, their icons would be
circled in red. If the cell 's value did not satisfy its
assertions, the value would be circled.

Microsoft Excel, a popular commercial spreadsheet
application, has a data validation feature integrated into the
environment that bears a surface-level similarity to the
assertions in our environment. Excel, however, does not
support propagation of assertions to other cells, does not
automatically display assertions, and does not automa-
tically update the display of assertion violations when
changes are made. That is, the data validation feature is
primarily an optional data entry check that can be invoked
from time to time by the user. This is quite different from
our approach, because our assertions combine into a
network that is the basis of an ever-present reasoning sys-
tem that gives continuous and up-to-date visual feedback.

In addition to the integration of assertion feedback with
the program source code (formulas) and values, in our pro-
totype environment there is also testing feedback integrated

95

in the same fine-grained way via our already incorporated
spreadsheet testing methodology known as WYSIWYT
("What You See is What You Test") [11, 24]. WYSIWYT
implements a dataflow test adequacy criterion based on
definition-use (du) associations, which associate formula
subexpressions that define a cell's value (definitions) with
references to the cell in other cells' formulas (uses); see
[24] for formal definitions. The criterion for complete
"testedness" under this methodology is that each execu-
table du-association in the spreadsheet be exercised by test
data in such a way that the du-association contributes (di-
rectly or indirectly) to the display of a value that is subse-
quently pronounced correct by the user. Users can convey
to the system that a cell's value is correct for the spread-
sheet's inputs by checking the checkbox in the corner of
the cell. This results in a change of cell border color, which
represents the testedness of a cell. Red means untested,
purple shades mean partially tested, and blue means fully
tested. There is also a "percent tested" indicator at the top
of the spreadsheet. These devices are always kept up-to-
date. For example, when a formula is modified, the cell
border turns red because the cell is untested; borders of
cells that reference the modified cell also turn red. Because
a principle of our end-user software engineering approach
is that assertions be integrated with testing support, the
investigation of assertions in this paper is in the context of
WYSIWYT.

2.5 Example

We close this section by presenting a simple illustration
of our prototype assertion mechanism in the context of the

Forms/3 research spreadsheet language [6]. Figure 3(a)
shows a portion of a Forms/3 spreadsheet that converts
temperatures in degrees Fahrenheit to degrees Celsius. The
input_temp cell has a constant value of 200 in its formula
and is displaying the same value. There is a user assertion
on this cell that limits the value of the cell to between 32
and 212. The formulas of the a, b, and output_temp cells
each perform one step in the conversion, first subtracting
32 from the original value, then multiplying by five and
finally dividing by nine. The a and b cells have assertions
generated by the system (as indicated by the computer
icon) which reflect the propagation of the user assertion on
the input_temp cell through their formulas. The
spreadsheet's creator has told the system that the
output_temp cell should range from 0 to 100, and the
system has agreed with this range. This agreement was
determined by propagating the user assertion on the
input temp cell through the formulas and comparing it
with the user assertion on the output_temp cell.

Suppose a user has decided to change the direction of
the conversion and make it convert from degrees Celsius to
degrees Fahrenheit. A summary follows of the behavior
shown by an end user in this situation in a study we
conducted early in our design of the approach [28]. The
quotes are from a recording of the subject's commentary.

First, the user changed the assertion on input_temp to
range from 0 to 100. This caused several red violation
ovals to appear, as in Figure 3(b), because the values in
input_temp, a, b, and output_temp were now out of range
and the assertion on output temp was now in conflict with
the previously specified assertion for that cell. The user
decided "that's OK for now," and changed the value in

r
200 /

Input_temp I

a i

(~
.............................. J

input ternp

£r~ut_te~ - 3 2 .

..................................... J

to 34 O ~

° '° '°° L T - J
~,, . ,8 ,o 3 , . q
~33.3333 ~1

output temp [
b / 9

t I
(b)

93,3333

Input temp ~ " i

ir4~ut_targp * 9/5

2t2
199,9994

b

output ternp I
! = i .[............................... i

(c)

Figure 3: Example at three points in the modification task.

96

input_temp from 200 to 75 ("something between zero and
100"), and then set the formula in cell a to "input_temp *
9/5" and the formula in cell b to "a + 32".

At this point, the assertion on cell b had a range from 32
to 212. Because the user combined two computation steps
in cell a's formula (multiplication and division), the correct
value appeared in cell b, but not in output_temp (which
still had the formula "b / 9"). The user now chose to deal
with the assertion conflict on output_temp, and clicked on
the guard icon to view the details in the graphical syntax.

Seeing that the Forms/3 assertion specified 3.5556 to
23.556, the user stated "There's got to be something wrong
with the formula" and edited output_temp's formula,
making it a reference to cell b. This resulted in the value of
output_temp being correct, although a conflict still existed
because the previous user assertion remained at 0 to 100.
Turning to the graphical syntax window, upon seeing that
Forms/3's assertion was the expected 32 to 212, the user
changed the user assertion to agree, which removed the
final conflict. Finally, the user tested by trying 93.3333, the
original output value, to see if it resulted in approximately
200, the original input value. The results were as desired,
and the user checked off the cell to notify the system of the
decision that the value was correct, as in Figure 3(c).

3. Experiment

Our initial think-aloud study provided early insights into
five end users' use and understanding of assertions, but did
not statistically evaluate effectiveness. Thus, to investigate
empirically whether and how this approach to assertions
would increase users' effectiveness at eliminating faults,
we conducted a controlled experiment involving 59 sub-
jects to investigate the following research questions:

Will assertions users be more effective debuggers?
Will users understand assertions?
Will assertions help users judge the correcthess of their

programs (spreadsheets) ?

We decided to isolate as much as possible the assertion
effects (dependent) variables from that of user choice
(whether or not to use assertions), which is also a depend-
ent variable. The effectiveness results could have been con-
founded if we also required subjects to choose to master
assertion entry. By largely eliminating user choice from
this experiment as a factor, we gained high assurance that
assertions would be present in the tasks, which is what en-
abled us to measure effectiveness and other effects of
assertions. In a separate experiment reported elsewhere
[31], we investigated user choice to use assertions, which
we discuss briefly in Section 5.

3.1 Procedures

The experiment was conducted in a Windows computer
lab. The subjects were seated one per computer. Prior to
running the experiment, we conducted a four-subject pilot
study to test the experimental procedures and materials.

At the beginning of the experiment, the subjects filled
out a background questionnaire. The session continued
with a 35-minute tutorial to familiarize subjects with the
environment, in which they worked on two spreadsheets
along with the instructor. Subjects worked in identical end-
user software engineering environments, except that the
Treatment group (two sessions) had the assertions feature
in their environment whereas the Control group (two ses-
sions) did not. To reduce memorization skills as a factor, a
quick-reference sheet listing the environment's features
was provided to the subjects. The sheet remained with
them throughout the experiment, and they were allowed to
take notes on it. To ensure that both groups had equal time
familiarizing themselves with their environments, we bal-
anced the time spent presenting assertions to the Treatment
group by providing additional hands-on practice time to the
Control group.

After the tutorial, subjects began their experimental
tasks of debugging a grades spreadsheet (20 minutes) and a
payroll spreadsheet (15 minutes). The use of two spread-
sheets reduced the chances of obscuring the results because
of any one spreadsheet's particular characteristics. The
tasks necessarily involved time limits, to make sure sub-
jects would work on both spreadsheets, and to remove pos-
sible peer influence of some subjects leaving early. The
time limits were drawn from times we observed to be re-
quired by the pilot study's subjects. The experiment was
counterbalanced with respect to problem to prevent
learning effects from affecting the results: all subjects
worked both problems, but half of each group debugged
the problems in the opposite order.

Initially, no assertions were on display for either prob-
lem. The Treatment subjects' scenario was that a previous
user had devised assertions for some of the cells, which
subjects could use by clicking that cell's "see user guard"
button. Clicking this button had the same effect as if a
helpful user had immediately typed in a user assertion for
that cell, but eliminated users having to learn how to enter
assertions, or choosing to go to that much trouble. We
decided on this procedure instead of having the assertions
already present, because the approach is for an interactive
environment, in which assertions are likely to be entered
and dealt with incrementally. Other than the button, no
other assertion editing devices were available. Once an
assertion had been entered via the button, it was
propagated and displayed as described in Section 2.

At the end of each task, subjects were given a post-task
questionnaire which included questions assessing their
comprehension and attitudes about the features they had
used, and also questions in which they self-rated their per-
formance. Besides the questionnaire responses, data in-
cluded the subjects' actions, which were electronically
captured in transcript files, and their final spreadsheets.

3.2 Subjects

The subjects were non-computer science students who
had little or no programming experience. The 59 subjects

97

were randomly divided into two groups: 30 in the Treat-
ment group and 29 in the Control group. Of the 59
subjects, 23 were business students, 22 came from a wide
range of sciences (such as psychology, biology, geography,
pharmacy, and animal science), and the remaining 14 came
from a variety of other non-computer science majors. The
average (self-reported) GPA of the Control group was
lower than that of the Treatment group but there was no
statistically significant difference. Roughly 60% of the
subjects had a little programming experience, due to the

fact that it is common these days for business and science
students to take a high school or college class in program-
ming. Statistical tests on subject data showed no significant
differences between the Treatment group and Control
group in any of these attributes.

3.3 P r o b l e m s

The debugging problems were Grades (Figure 4) and
Weekly Pay (not shown due to space limitations). Subjects

i!i!i:iii::::

• ! - ~ - ~ pL:L~ :

I ~ ' ~ I l_ °

2

)

' . 5 ,

n []

i~ ~ I ° / ... ~ ! ~ -~..~.... . , . ,~

{ . , .

" ~.o " . . ~ . ~...I

! ... J

m
1 ~o ¢ i

, 11il ~ [] U

(U .~..~tt~.t.O I~.dt.c.~:~A*0,~0 .* 0.40~U ~L,aL i I ~) M ~ ~:l~B.t.dt.¢~)'Co~ + (~,40 * 0 _ ~ . ~ L ~k ~

~ ~ (L~ 6.~Tot, a~ l¢o~ . .~- 770 ~ "C"

l.•!.• e "P"))) "

F i g u r e 4 : T h e G r a d e s S p r e a d s h e e t .

98

were given a written description of each spreadsheet. The
description explained the functionality of the spreadsheet,
and included the ranges of valid values for some of the
cells, so that all subjects would have exactly the same in-
formation about the spreadsheets, regardless of whether
their environment included assertions. The subjects were
instructed to "test the spreadsheet thoroughly to ensure that
it does not contain errors and works according to the
spreadsheet description. Also if you encounter any errors in
the spreadsheet, fix them."

The Grades spreadsheet (24 cells) calculates the grades
of two students, one graduate and the other undergraduate,
with different grading criteria. There are 11 faults in seven
cells of this spreadsheet. The Grades spreadsheet was laid
out such that it required scrolling, to ensure that not all
assertions and assertion conflicts would necessarily be
visible at any one time. The Weekly Pay spreadsheet (19
cells) calculates the weekly pay and income tax withhold-
ing of a salesperson. There are seven faults in five cells of
this spreadsheet.

To facilitate comparing the impact of assertions with
whatever other mechanisms subjects might use to identify
and correct faults, we devised assertions that would expose
only some of the faults. To avoid biasing results against the
Control group, we included assertions only for cells whose
ranges were explicitly stated on the problem description. In
choosing which ranges to state, we included all ranges that
could be clearly justified without a calculator. Via the but-
ton, all Grades cells had user assertions available, which
could expose only 8 of the 11 faults. For Weekly Pay, user
assertions able to expose 3 of the 7 faults were available.

3.4 Fault types

Allwood [1] classified faults in spreadsheets as
mechanical, logical and omission faults, and this scheme is
also used in Panko's work [20]. Under Allwood's categori-
zation, mechanical faults were further classified as simple
typographical errors or wrong cell references in the cell
formulas. Mistakes in reasoning were classified as logical
faults. Logical faults in spreadsheets are more difficult than
mechanical faults to detect and correct, and omission faults
are the most difficult [1]. An omission fault is information
that has never been entered into the formulas.

We drew from this research by including faults from
each category in each problem. However, the precise dis-
tinctions between logical and mechanical are not clear for
some types of faults in end-user programming. For exam-
ple, when computing an average, does dividing by the
wrong number mean the subject typed it wrong, or that
they are confused about computing averages? In our think-
aloud studies we have collected data in which end-user
subjects made exactly this error for both of these reasons.
Thus, we combined the first two categories into one and
then, to be sure coverage of both would be achieved, in-
cluded several different subtypes under it: incorrect refer-
ences (which Allwood would classify as mechanical),
incorrect constants or an omitted character (could be either

Table 1: Classifications of seeded faults.
Omission

Grades 2
Weekly 1
Pay

Logical and Mechanical
Ref. Const. Oper- Extra

or ator subexpr
char.

2 3 3 1
2 2 2 0

logical or mechanical), incorrect operators or application of
operators (which Allwood would classify as logical), and
an extra subexpression (logical). We also included faults
from the third category, omission faults. Table 1 shows a
summary of the spreadsheets' faults.

Another classification scheme we have found to be use-
ful in our previous research involves two fault types: refer-
ence faults, which are faults of incorrect or missing refer-
ences, and non-reference faults, which are all other faults.
In this study, the omissions and incorrect references are
reference faults (7 in total), and the remaining types are
non-reference faults (11 in total).

The faults not exposed by assertions were distributed
across Table l ' s categories, and were also assigned in pro-
portion to the reference/non-reference categorization.

4. Results

4.1 D e b u g g i n g e f fec t iveness

4.1.1 Accuracy by subject group. We chose to analyze
the act of identifying a fault separately from the act of cor-
recting it. The reason was that there is little information in
the literature about end users' abilities to correct a fault
even if they have managed to identify it, a gap we hope to
help fill. For cells containing exactly one fault, we defined
a fault to have been identified if the subject changed the
formula containing the fault and to have been corrected if
the changes resulted in a correct formula. When a cell
contained two faults, we partitioned the formula into two
disjoint subexpressions, one containing each fault. Then if
the particular fault 's subexpression was changed (or
changed correctly), the fault was defined to be identified
(or corrected). For example, in cell U_EffHW the original
formula in the cell is (U_Sumlst2nd+U_HW2)/3, and the
correct formula is (U_Sumlst2nd+U_HW3)/2. The two
faults are adding U_HW2 instead of U_HW3 and dividing
by 3 instead of 2. The two parts to the formula are the sum
and the division. Hence a subject would be credited with
identifying (correcting) the fault in the sum if the sum
subexpression was changed (changed correctly) and
credited with identifying (correcting) the fault in the
division if the divisor was changed (changed correctly).

We now state the following (null) hypotheses as
statistical vehicles for investigating the accuracy question:

Hi: Identify: There will be no difference between the
Treatment group's and Control group's number of
faults identified.

99

H2: Correctness: There will be no difference between the
Treatment group's and Control group's number of
faults corrected.
The faults identified and corrected are summarized in

Table 2. A two-factor analysis of variance with repeated
measures on the problem (Grades and Weekly Pay) and
group (Control and Treatment) showed that the Treatment
subjects both identified significantly more faults (F=16.59,
df=l, p=.0001) and corrected significantly more faults
(F=11.74, df=l , p=.0011) than did the Control subjects.
Thus, hypotheses H1 and H2 must both be rejected.

Both the Treatment and Control subjects corrected
nearly equal percentages of the faults they identified (Table
3). That is, when they found the faults, they generally
succeeded at correcting them. In fact, in the Grades
problem the percents corrected once identified were
exactly the same for subjects with assertions as for those
without assertions, and the difference was very small in the
Weekly Pay problem. This suggests that the assertion
advantages in identifying faults were enough to produce the
eventual advantages in correcting them.

4.1.2 Accuracy by fault type. Did assertions especially
help with any particular type of faults? Fisher's Exact Test
showed that the Treatment group identified significantly
more instances on seven of the 18 faults, but they were not
all of the same type. In fact, these faults covered four of the
five types of faults we seeded (recall Table 1): three were
operator or operator application fanlts, two were incorrect
constants, one was an omission, and one was an incorrect
reference. Thus, according to Allwood's classification
scheme, assertions contributed to effectiveness across a
wide range of faults.

Considering instead the reference/non-reference
classification of faults reveals an interesting attribute of
assertions' effectiveness: subjects in the Treatment group
were significantly more effective at identifying and
correcting non-reference faults in both problems (Grades
corrected: F=9.67, df=l, p=.0029; Weekly Pay corrected:
F=8.26, df=l , p=.0057). There was also significance for
reference faults on one of the problems (Grades corrected:

Table 2: Mean number of faults identified and

Grades (11 faults)
Control
Treatment

corrected.
l Identified Corrected

5.69 4.83
8.07 6.83

Weekly Pay (7 faults)
Control 4.97 4.59
Treatment 5.90 5.70

Table 3: Percent of identified faults that were
eventually corrected.

Grades I Weekly Pay
Control (n=29) 84.8% I 92.4%
Treatment (n=30) 84.8% I 96.6%

F=4.67, dr=l, p=.0348; Weekly Pay corrected: F=3.72,
df=l, p=.0506). In contrast to this, previous empirical work
regarding the effectiveness of the WYSIWYT testing
methodology (which is based on a dataflow adequacy
criterion) on detecting faults has revealed that
WYSIWYT's advantage has been primarily in identifying
and correcting reference faults [7].

Since both groups' subjects had WYSIWYT available
to them, which is strong on reference faults, it is not
surprising that the reference fault improvement brought by
assertions was significant on only one problem. The more
interesting result is that assertions helped so significantly
with non-reference faults, suggesting that the addition of
assertions into the environment fills a need not met
effectively by the dataflow testing methodology alone.

4.1.3 Debugging speed
H3: Speed: There will be no difference between the

Treatment group's and Control group's speed in
correcting the faults.
We partitioned the task time into 5-minute blocks--the

first 5 minutes, second 5 minutes, and so on--and counted
the number of faults that had been corrected by the end of
each partition. Since subjects had more time on Grades
than on Weekly Pay, there are four partitions for Grades
and three for Weekly Pay. As Figure 5 shows, the Treat-
ment subjects identified and corrected faults faster in each
of the 5-minute blocks. The Treatment subjects' advantage
began very early. The correctness differences were signifi-
cant for the Weekly Pay problem at the 5-minute mark
(identified F=3.70, dr=l, p=.0595; corrected F=4.19, dr=l,
p=.0453), and the subjects were significantly more effec-
tive at identifying and correcting faults during the first 5
minutes for the Grades problem (identified F=13.04, dr=l,
p=.0006; corrected F=15.67, df=l, p=.0002). Thus, H3 is
rejected.

4].48

m 1.66$

1

0

Ci ~ Ti Tc Ci Cc Ti Tc

7

6

5

4

3

2

1

0

Figure 5: Average faults identified by each group
(Ci, Ti) and corrected (Cc, Tc). Each block covers

5 minutes (first 5-minute period at the bottom,
etc.), and the data value in it is the number of

faults identified/corrected during that time period.
Left graph: Grades. Right graph: Weekly Pay.

100

4.2 Did the users understand assertions?

Assertions had significant positive impacts on subjects'
abilities to remove the faults, but to what extent did they
understand what the assertions meant? At least some
understanding is important, because research in on-line
trust has shown that users must believe they understand the
system's reasoning, at least roughly, in order to trust its
results enough to use them effectively [4, 8].

To help assess the subjects' understanding, we asked
several questions about the meanings of the different
devices in the context of a two-cell example spreadsheet.
The results, which are summarized in Table 4, imply that
the Treatment subjects understood the meaning of the
assertion features reasonably well. The first four questions
were multiple choice. The last question,-in which the
subjects were required to fill in the result of propagating
cellA's assertion (0 to 5) through cellB's formula (celia +
10), was the most difficult for them, but 53% answered it
correctly (10 to 15). An additional 23% answered "0 to
15." The fact that this additional 23% were correct on the
upper limit seems to indicate that they had a rough, but
imperfect, idea of how propagation worked.

One strong indicator that the subjects believed their
understanding was "good enough" for reliance upon
assertions can be found in their ratings. Subjects rated the
helpfulness of three assertion features and also two testing
features. Treatment subjects rated the assertion conflicts
the most helpful of all the features. On a scale of 1 to 5 (not
helpful to very helpful), their ratings for the assertion
conflicts averaged 4.4 (median 5). See Table 5.

Table 4: Percentage of correct responses given
by Treatment subjects. (Correct responses are

shown in parentheses.)
Question
What does the red oval on celiA mean? (The 93%
value is outside the valid range.)
What does the little stick figure in the celiA 83%
guard mean? (The user supplied the guard.)
Why is there a stick figure and a computer 87%
on cellB's guard? (The guard was supplied
by both Forms/3 and by the user.)
What does the red oval on the cellB guard 63%
mean? (The user and Forms/3 disagree on
the valid range(s) for this cell.)
Given the formula in cellB and the guard on
celiA, what do you think Forms/3 says are
the valid range(s) for cellB? (10 to 15)

% correct

53%

Table 5: Subjects' helpfulness ratings.
Assertion "Tested"j System- User %
conflicts border generated tested

colors assertions assertions

Control : N/A 4.2 I N/A N/A I 2.9
Treatmentj 4.4 4.3 4.2 4.0 3.6

4.3 Judging correctness

After the subjects had completed the experimental tasks,
we asked them to what extent they believed they had
managed to identify and to correct all the faults. In the
practice of software development, it is often this question
that the developer uses to decide whether the software is
ready to use. For this reason, helping users make
reasonable judgments in answer to this question can be
important in preventing software from going into use
prematurely.

The questionnaire asked them to rate on a 1 ("not
confident") to 5 ("very confident") scale, for each problem,
how confident they were that they had identified and
corrected all the faults. The issue relevant to the
effectiveness of assertions is to what extent these self-
ratings were correlated with correctness. To this end, we
compared self-ratings to actual performance.

H4: Self ratings of correctness: There will be no difference
between Control versus Treatment subjects' self-ratings
as predictors of correctness (number of faults in the
spreadsheets at the end of the experiment).

Regression analysis is the appropriate test for a
predictive question of this type. The results for correcting
the faults are shown in Table 6; the results for identifying
the faults (not shown) are similar. The regression
coefficient is the slope of the least squares fitting of the
ratings against the faults that were corrected. As the table
shows, the Treatment group gave self-ratings that were
statistically significant predictors of actual performance,
with regression coefficients that were significantly
different from zero for both problems. (This was true also
for identifying the faults.) The Control group's self-ratings,
on the other hand, were ineffective as predictors, and their
regression coefficients were not significantly different
from zero. In fact, for one problem, the regression
coefficient is slightly negative, indicating that the Control
group's predictions had a slight tendency to be the opposite
of their actual performance. Clearly, H4 is rejected.

This result is important. It is a well known and robust
result f rom behavioral science that humans are
overconfident about the work they do, and that this
tendency is extremely resilient. In the spreadsheet literature
this tendency has become known as overconfidence. Such
overconfidence has been widely reported in many
spreadsheet studies (surveyed in [20]), in the Forms/3 envi-
ronment [30], and in studies of software professionals [14].

Table 6: Self-ratings as correctness predictors.
Regression I df Significance

coeff. I
Grades

Con~ol 0.168
Treatment 0.210

Weekly Pay
Control -0.038
Treatment 0A77

1.434 27 p = .1645
2.188 28 p = .0375

-0.261 27 p = .7963
2.165 28 p = .0394

101

Although overconfidence of spreadsheet accuracy has pre-
viously been reduced to some extent by the WYSIWYT
testing methodology, the reductions have not been
sufficient to correlate in a statistically significant way with
accuracy [13]. The improved level of judgment associated
with assertions thus fills a gap in end-user programming,
which could prevent some of their software from going
into production use too early.

5. Motivating users to enter assertions

We have explained that we designed our experiment to
isolate effectiveness of assertions when they were present,
and thus while subjects had a choice as to whether and
which assertions were present, they did not have to actually
enter them.

To address the issue of motivating users to author their
own assertions, in parallel with this experiment we began
devising an approach for gently inviting end users to enter
and use assertions. Our approach attempts to first arouse
users' curiosity and then to encourage them to follow
through, using a strategy comprised of an intertwined
collection of surprises, explanations, and rewards. If the
users become curious about assertions, they can obtain on-
line explanations about how to go about entering
assertions. The details of this strategy and how we have
prototyped it are given in [31].

Using this strategy, in a follow-up experiment, we
focused specifically on the question of whether users will
author their own assertions via the concrete syntaxes of
Section 2. In the follow-up experiment, assertions were not
explained or even mentioned in the tutorial. Even more
important, no pre-wfitten assertions were provided to them.
Instead, the tutorial instructed users to explore the
environment in any way they wished, and gave them time
to practice doing so. The follow-up experiment is reported
in [31]. To briefly summarize its results, in their work on
the same problems as for the experiment reported here, 15
of the 16 subjects (94%) did choose to author their own
assertions, and once they entered one they entered more,
averaging 18 assertions per subject. Further, 95% of the
assertions they entered were correct.

6. Threats to validity

We attempted to address threats to internal validity for
this study by randomly distributing subjects among the
groups and statistically checking the distribution for
significant differences, by including two problems and
counterbalancing them, by distributing the seeded faults
among a variety of fault types, by equalizing training time,
and by selecting problems from familiar domains.

As in most controlled experiments, however, threats to
external validity are more difficult to address given the
need to control all other factors. For example, the
spreadsheets used may seem rather simple, but most
subjects did not achieve 100% correctness of their
formulas, indicating that the spreadsheets were not too

simple for the amount of time given. Also, although the
prototype and experiment included only constants as
assertion operands, we do not view this as a threat to
validity, because the assertions are fairly powerful even
with this restriction. However, the faults we used to seed
the spreadsheets may not have been representative of
formula faults in real-world spreadsheets.

The fact that the experiment included explicit time
limits is a threat to external validity. Explicit t ime limits
were necessary to eliminate the internal threat of subjects
stopping only because other subjects were finishing and
leaving. In the real world, the amount of time available for
debugging is constrained by time pressures, but explicit
time limits do not ideally simulate these time pressures.

The short tutorial prior to the experiment included an
informal explanation of how system-generated assertions
are created through propagation, but no such explanation
would be likely in the real world. We have begun to
address this concern with our surprise-explain-reward
strategy (Section 5), which now includes the essential
information about assertions in a network of context-
sensitive explanations [3, 31]. The subjects in the follow-
up experiment seemed to understand assertions enough to
use them effectively, but further empirical work after the
explanation system is more mature is required.

The current experiment did not ask users to author their
own assertions. Although the follow-up experiment
addresses that issue, in neither experiment did the users
write their own spreadsheets "from scratch." This approach
was necessary for fair quantitative comparisons of
spreadsheet errors, and it is consistent with the real-world
situation in which the user inherits a spreadsheet from a co-
worker. However, the results of this experiment may not
generalize to spreadsheets a user creates alone.

7. Conclusion

We have presented an approach for supporting
assert ions in end-user software, focusing on the
spreadsheet paradigm. Our assertions provide expressions
about the results of cell executions--that is, postconditions
on the executing cell and also preconditions to cells further
downstream. Assertions can be generated by the user or the
system. The concrete syntaxes by which assertions are
represented look to users like simple points and ranges, but
these syntaxes are sufficient to express an entire abstract
assertion syntax of substantial power.

To evaluate our approach empirically, we conducted a
controlled experiment with 59 end-user subjects. The most
important results were:
• Assertions did indeed help end users debug more effec-

tively and more efficiently.
• The effectiveness boost applied across a wide range of

fault types. Moreover, assertions were extremely
effective with non-reference faults, a class that had not
been amenable to detection by our dataflow testing
methodology for end users.

102

• Assertions clearly combated the well established ten-
dency of end users toward overconfidence, by signifi-
cantly improving their ability to judge whether they had
done enough to ensure the correctness of their
spreadsheets.
Perhaps the most surprising result of all is that end users

not only understood assertions, they actually liked them.
They rated assertion conflicts as being more helpful than
any other feature, and in a follow-up experiment, if
subjects discovered assertions, they chose to enter quite a
few of them. The facts that they understood and liked
assertions are critical outcomes because of their importance
in determining whether end users will ultimately use
assertions in the real world.

Acknowledgments

We thank the members of the Visual Programming
Research Group at Oregon State University for their
feedback and help. This work was supported in part by
NSF under award ITR-0082265.

References

[1] Allwood, C. Error detection processes in statistical problem
solving. Cognitive Science 8(4), 1984, 413-437.

[2] Auguston, M., Banerjee, S., Mamnani, M., Nabi, G.,
Reinfelds, J., Sarkans, U., and Strnad, I. A debugger and
assertion checker for the Awk programming language. Int.
Conf. Soft. Eng., 1996.

[3] Beckwith, L., Burnett, M., and Cook, C. Reasoning about
many-to-many requirement relationships in spreadsheets,
IEEE Symp. Human-Centric Lang. Environ. Arlington, VA,
Sept. 2002, 149-157

[4] Belkin, N. Helping people find what they don't know, Comm.
ACM 41 (8), Aug. 2000, 58-61

[5] Boehm, B. and Basili,, V. Gaining intellectual control of
software development, Computer 33(5), May 2000, 27-33.

[6] Burnett, M., Atwood, J., Djang, R., Gottfried, H., Reichwein,
J., and Yang, S. Forms/3: a first-order visual language to ex-
plore the boundaries of the spreadsheet paradigm, J.
Functional Programming, Mar. 2001, 155-206.

[7] Cook, C., Rothermel, K., Burnett, M., Adams, T., Rothermel,
G., Sheretov, A., Cort, F., and Reichwein, J. Does a visual
"testedness" methodology aid debugging? TR #99-60-07,
Oregon State Univ., rev. March 2001.

[8] Corritore, C., Kracher, B., and Wiedenbeck, S. Trust in the
online environment, HCI International, Vol. 1, New Orleans,
LA, Aug. 2001, 1548-1552.

[9] Dwyer, M., Avrunin, G., and Corbett, J. Patterns in property
specifications for finite-state verification, Int. Conf. Soft.
Eng., Los Angeles, CA, May 1999, 411-420.

[10] Ernst, M., Cockrell, J., Griswold, W., and Notkin, D.
Dynamically discovering likely program invariants to
support program evolution, Int. Conf. Soft. Eng., Los
Angeles, CA, May 1999, 213-224.

[11] Fisher, M., Cao, M., Rothermel, G., Cook, C., and Burnett,
M. Automated test case generation for spreadsheets, Int.
Conf. Soft. Eng., Orlando, FL, May 2002, 141-151.

[12] Hangal, S. and Lain, M. Tracking down software bugs using
automatic anomaly detection, Int. Conf. Soft. Eng., Orlando,

FL, May 2002, 291-301.
[13] Kfishna, V., Cook, C., Keller, D., Cantrell, J., Wallace, C.,

Burnett, M., and Rothermel, G. Incorporating incremental
validation and impact analysis into spreadsheet maintenance:
an empirical study, IEEE Int. Conf. Soft. Maintenance,
Florence, Italy, Nov. 2001,72-81.

[14] Leventhal, L., Teasley, B., and Rohlman, D. Analyses of
factors related to positive test bias in software testing. Int. J.
Human-Computer Studies 41, 1994, 717-749.

[15] Meyer, B. Applying "Design by Contract," Computer
25(10), October 1992, 40-51.

[16] Michael, J., Ong, V., and Rowe, N. Natural-language
processing support for developing policy-governed software
systems, Int. Conf. Technology for Object-Oriented
Languages and Systems, Santa Barbara, CA, 2001.

[17] Miller, R. and Myers, B. Outlier finding: focusing user
attention on possible errors, ACM Symp. User Interface
Software and Technology, Nov. 2001.

[18] Pane, J., Ratanamahatan, C., and Myers, B. Studying the
language and structure in non-programmers' solutions to
programming problems. Int. J. Human-Computer Studies
54(2), Feb. 2001,237-264.

[19] Panko, R. Finding spreadsheet errors: most spreadsheet
models have design flaws that may lead to long-term
miscalculation, Information Week, May 1995, 100-100.

[20] Panko, R. What we know about spreadsheet errors. J. End
User Computing, Spring 1998, 15-21.

[21] Raz, O., Koopman, P., and Shaw, M. Semantic anomaly
detection in online data sources, Int. Conf. Soft. Eng.,
Orlando, FL, May 2002, 302-312.

[22] Rosenblum, D. A practical approach to programming with
assertions, 1EEE Trans. Soft. Eng., Jan. 1995, 19-31.

[23] Rosenblum, D., Sankar, S. and Luckham, D. Concurrent
runtime checking of Annotated Ada programs, Conf. Foun-
dations Soft. Technology and Theoretical Comp. Science
(LNCS 241). NY, Springer-Verlag, Dec. 1986, 10-35.

[24] Rothermel, G., Burnett, M., Li, L., DuPuis, C., Sheretov, A.
A methodology for testing spreadsheets, ACM Trans. Soft.
Eng. and Methodology, Jan. 2001, 110-147.

[25] Sankar, S., Mandal, M. Concurrent runtime monitoring of
formally specified programs, Computer, Mar. 1993, 32-41.

[26] Smith, R., Avrunin, G., Clarke, L., and Osterweil, L. Propel:
an approach supporting property elucidation, Int. Conf. Soft.
Eng., Orlando, FL, May 2002, 11-21.

[27] Summet, J. and Burnett, M. End-user assertions: propagating
their implications, TR 02-60-04, Oregon State Univ., 2002.

[28] Wallace, C., Cook, C., Summet, J., and Burnett, M. Asser-
tions in end-user software engineering: a think-aloud study
(Tech Note), IEEE Symp. Human-Centric Lang. Environ.,
Arlington, VA, Sept. 2002, 63-65.

[29] Welch, D., String, S. An exception-based assertion mechan-
ism for C++. J. Obj. Oriented Prog. 11(4), 1998, 50-60.

[30] Wilcox, E., Atwood, J., Burnett, M., Cadiz, J., and Cook, C.
Does continuous visual feedback aid debugging in direct-
manipulation programming systems? ACM Conf. Human
Factors in Computing Systems, Mar. 1997, 258-265.

[31] Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,
Casburn, L., Cook, C., Durham, M. and Rothermel, G.
Harnessing curiosity to increase correctness in end-user
programming, ACM Conf. Human Factors in Computing
Systems, Ft. Lauderdale, FL, Apr. 2003 (to appear).

103

