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Abstract 

There has been little research on end-user program 
development beyond the activity of programming. Devising 
ways to address additional activities related to end-user 
program development may be critical, however, because 
research shows that a large proportion of  the programs 
written by end users contain faults. Toward this end, we 
have been working on ways to provide formal "software 
engineering" methodologies to end-user programmers. 
This paper describes an approach we have developed for 
supporting assertions in end-user software, focusing on the 
spreadsheet paradigm. We also report the results of a con- 
trolled experiment, with 59 end-user subjects, to investi- 
gate the usefulness of this approach. Our results show that 
the end users were able to use the assertions to reason 
about their spreadsheets, and that doing so was tied to 
both greater correctness and greater efficiency. 

1. In~oducfion 

End-user programming has become a widespread 
phenomenon. For example, end users create and modify 
spreadsheets, they author web pages with links and com- 
plex formatting specifications, and they create macros and 
scripts. Although some of these programs are small, one- 
shot calculations, many are much more serious, affecting 
significant financial decisions and business transactions. 
Two recent NSF workshops have determined that end-user 
programming is in need of serious attention [5]. The 
reasons are compelling. The number of end-user program- 
mers in the U.S. alone is expected to reach 55 million by 
2005, as compared to only 2.75 million professional 
programmers [5]. Further, evidence abounds of the perva- 
siveness of errors in the software that end users create [20], 
with significant economic impact. In one single example, a 
Texas oil and gas firm lost millions of dollars through 
spreadsheet errors [19]. 

To address this problem, we have been researching 
methods for helping end users create more reliable soft- 
ware. Our approach brings aspects of theoretically sound 
methodologies, explored previously within the professional 
software engineering community, into the environments 
end users use to create software. We term the concept 
"end-user software engineering"; however, we do not 

claim or attempt to turn end users into software engineers 
or ask them learn traditional software engineering method- 
ologies. Instead, the methodologies we employ aim to be 
not only accessible, but also venfiably productive for end 
users with little or no formal training in software 
engineering. 

Assertions in the form of preconditions, postconditions, 
and invariants provide professional programmers with in- 
creased ability to maintain and debug software. Assertions 
provide attractive opportunities for adding rigor to end-user 
programming for two reasons. First, the use of assertions 
does not demand an "all or nothing" approach; it is pos- 
sible to enter one or two assertions and gain some value, 
without committing to entering a purportedly complete set 
of assertions. Second, assertions provide a way to make 
explicit a user 's  mental model underlying a program, 
essentially, integrating "specifications" with that program. 
Such specifications, integrated into end-user programs, 
could tap into a host of opportunities for harnessing other 
software engineering methodologies, such as test suite im- 
provement, specification-based test generation, automated 
test oracle generation, or proofs of program properties. 

We have developed an approach for supporting asser- 
tions as a critical underpinning of our end-user software 
engineering work. We have prototyped our approach in the 
spreadsheet paradigm. Our assertions provide pre- and 
postcondition Boolean expressions about the results of cell 
formula execution. The approach supports a variety of 
relations, as well as composition via logical "and" and 
"or," in two concrete syntaxes. It is our hope that assertions 
will enable the user to identify and correct faulty formulas. 

In this paper, we first present our approach to integrat- 
ing assertions into an environment whose goal is to support 
end-user software engineering. We then use this environ- 
ment to empirically explore the fundamental issues of 
whether end users can use assertions in the context of an 
end-user software engineering task, and whether and how 
their doing so improves the correctness of their programs. 

2. Assertions for end users 

When creating a spreadsheet, the user has a mental 
model of how it should operate. One approximation of this 
model is the formulas they enter, but unfortunately these 
formulas may contain inconsistencies or faults. These for- 
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mulas, however, are only one representation of the user's 
model of the problem and its solution: they contain infor- 
mation on how to generate the desired result, but do not 
provide ways for the user to communicate other properties. 
Traditionally, assertions in the form of preconditions, post- 
conditions, and invariants have fulfilled this need for pro- 
fessional programmers, providing a method for making 
explicit the properties the programmers expect of their 
program logic, to reason about the integrity of their logic, 
and to catch exceptions. Our approach attempts to provide 
these same advantages to end-user programmers. 

For professional software developers, the only widely 
used language that natively supports assertions is Eiffel 
[15]. To allow programs in other languages to share at least 
some of the benefits of assertions, methods to add support 
for assertions to languages such as C, C++ and Awk have 
been developed (e.g., [2, 29]). Applications of such asser- 
tions to software engineering problems have proven 
promising. For example, there has been research on deriv- 
ing runtime consistency checks for Ada programs [23, 25]. 
Rosenblum has shown that these assertions can be effective 
at detecting runtime errors [22]. However, traditional ap- 
proaches that employ assertions are aimed at professional 
programmers, and are not geared toward end users. 

2.1 An abstract syntax 

As in the above approaches, our assertions are com- 
posed of Boolean expressions, and reason about program 
variables' values (spreadsheet cell values, in the spread- 
sheet paradigm). Assertions are "owned" by a spreadsheet 
cell. Cell X's  assertion is the postcondition of X's  formula. 
X's  postconditions are also preconditions to the formulas 
of all other cells that reference X in their formulas, either 
directly or transitively through a network of references. 

To illustrate the amount of power we have chosen to 
support with our assertions, we present them first via an 
abstract syntax. An assertion on cell N is of the form: 

(N, {and-assertions}), where: 
each and-assertion is a set of or-assertions, 
each or-assertion is a set of (unary-relation, value- 

expression) and (binary-relation, value-expression- 
pair) tuples, 

each unary-relation ~ {=, <, <=, >, >=}, 
each binary-relation ~ {to-closed, to-open, to-openleft, 

to-openright}, 
each value-expression is a valid formula expression in 

the spreadsheet language, 
each value-expression-pair is two value-expressions. 
For example, an assertion denoted using this syntax as 

(N, {{( to-closed, 10, 20), (= 3)}, {= X2}}) means that N 
must either be between 10 and 20 or equal to 3; and must 
also equal the value of cell X2. 

This abstract syntax is powerful enough to support a 
large subset of traditional assertions that reason about 
values of program variables. We also plan to eventually 
support inequality (~) as a unary relation. This operator 

would be solely for convenience; it would not add power 
given the relations already present, since ~ can be ex- 
pressed as an or-assertion composing < with >. This ab- 
stract syntax follows CNF (Conjunctive Normal Form): 
each cell's collection of and-assertions, which in turn com- 
pose or-assertions, is intended to evaluate to true, and 
hence a spreadsheet 's  assertion is s imp ly -an  "and" 
composition of all cells' assertions. 

2.2 Concrete syntaxes for end users 

The abstract syntax just presented is not likely to be 
useful to end users. Thus, we have developed two concrete 
syntaxes corresponding to it: one primarily graphical and 
one textual. The user can work in either or both as desired. 

The graphical concrete syntax, depicted in Figure 1, 
supports all of the abstract syntax (but in the current pro- 
totype implementation,  value-expressions have been 
implemented for only constants). The example is a repre- 
sentation of (output_temp, {{(to-closed, 0, 100)}, {(to- 
closed, 3.5556, 23.5556)}}). A thick dot is a data point in 
an ordinal domain; it implements "=". The thick horizontal 
lines are ranges in the domain, implementing "to-closed" 
when connected to dots. A range with no lower (upper) 
bound implements "<=" (">="). It is also possible to halve 
a dot, which changes from closed ranges to open ranges, 
"<=" to "<", and so on. Disconnected points and ranges 
represent the or-assertions. Multiple assertions vertically in 
the same window represent the and-assertions. 

The textual concrete syntax, depicted in Figure 2, is 
more compact, and supports the same operators as the 
graphical syntax. Or-assertions are represented with 
comma separators on the same line (not shown), while and- 
assertions are represented as assertions stacked up on the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 ? b J  ...................................... 

~,,5558 ~:3~5558 

Figure 1 : Two (conflicting) assertions "and"ed on 
the same cell. 

40 1~KI 
, .L.%~ i 

U_El~l',,,lidterm 
Figure 2: Two assertions in the textual syntax. 
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same cell, as in Figure 2. There is also an "except" 
modifier that supports the "open" versions of "to" (e.g., 0 
to 10 except 10). 

Our system does not use the term "assertion" in commu- 
nicating with users. Instead, assertions are termed guards, 
so named because they guard the correctness of the cells. 
The user opens the guard tab above a cell to display the 
assertion using the textual syntax, or double-clicks the tab 
to open the graphical window. Although both syntaxes 
represent assertions as points and ranges, note that points 
and ranges, with the composition mechanisms just de- 
scribed, are enough to express the entire abstract syntax. 

Note that although "and" and "or" are represented, they 
are not explicit operators in the syntaxes. This is a 
deliberate choice, and is due to Pane et al.'s research, 
which showed that end users are not successful at using 
"and" and "or" explicitly as logical operators [ 18]. 

The textual concrete syntax we present here bears some 
resemblance to recent work on English-like notations for 
formal specifications. Although assertions and other forms 
of specification such as property patterns [9] are usually 
presented using rigorous mathematical notations or finite 
state automata, there is work on expressing specifications 
in more accessible notations (e.g., [16, 26]). For example, 
Propel [26] is a multiple-view approach to properties that 
includes an English-like representation. 

A central difference between that work and ours is that 
their properties and English-like syntax emphasize se- 
quence. Our assertions have no temporal operators and 
cannot express sequence. This is appropriate because 
reasoning .about sequence is not a programmer 
responsibility in declarative paradigms that focus on data 
definition, such as the spreadsheet paradigm, in which se- 
quence is automatically derived from data dependencies. 

2.3 Assertion sources' potential impact 

We currently support two sources of assertions. User 
assertions are assertions that the user enters explicitly, one 
of which appears in Figure 2 next to the stick figure. 
System-generated assertions are assertions resulting from 
propagating assertions through formulas in the direction of 
dataflow (using straightforward logic and interval arith- 
metic), one of which appears in the figure next to the com- 
puter icon. (Details of propagation are described in [27].) 

Other researchers have developed methods for generat- 
ing program assertions without requiring programmer input 
as a source. Daikon [10] generates invariant assertions by 
extensive examination of a program's behavior over a large 
test suite. DIDUCE [12] deduces invariant assertions and 
uses them to check program correctness. DIDUCE has a 
training phase, in which it considers all behaviors correct 
and relaxes invariants to encompass them, and then a 
checking phase, which reports violations to the invariants 
inferred in the training phase. Raz et al.'s approach to se- 
mantic anomaly detection [21] uses off-the-shelf unsuper- 
vised learning and statistical techniques, including a 
variant of Daikon, to infer invariants about incoming data 

arriving from online data feeds, and their empirical work 
shows effectiveness. Recent work that can be described as 
inferring assertions related to correctness of end-user pro- 
grams involves automatic detection of errors through out- 
lier analysis [17]. This approach is similar in principle to 
that of Raz et al., but has been developed in the domain of 
programming-by-demonstration for text processing. 

An advantage of these researchers' inferential ap- 
proaches is that they can relieve the programmer of having 
to conjure up and explicitly insert assertions. A disadvan- 
tage is that these inferences must be "guessed," and some 
of the guesses can be incorrect. The impact of incorrect 
guesses on end users' trust and willingness to work with 
assertions is an issue that requires exploration. 

Because of multiple sources of assertions (currently 
two, potentially more), our approach provides the follow- 
ing three ways for assertions to potentially help users de- 
tect faults: (1) there might be multiple assertions on the cell 
that do not agree, termed an assertion conflict, (2) the 
cell's value might not satisfy the cell's assertion(s), termed 
a value violation, or (3) a system-generated assertion might 
"look wrong" to the user. When any of these events occur, 
there may be either a fault in the program (spreadsheet 
formulas) or an error in the assertions. 

2A Assertions in an end-user environment 

An important difference between our approach to asser- 
tions and more traditional approaches is that ours is a com- 
ponent of an integrated set of software engineering features 
designed particularly for end users. It is not a separate tool, 
and a user need not use it in an "all or nothing" manner. 
Instead, the user might enter a few assertions, immediately 
see their effects on the formulas entered so far, and then 
apply other forms of validation on other formulas. Feed- 
back about assertions is integrated with the variables (cells) 
to which they apply. For example, the assertions about cell 
U_EffMidterm appear at the top of that cell, as already 
shown in Figure 2. If  the two assertions about cell 
U_EffMidterm were in conflict, their icons would be 
circled in red. If  the cell 's value did not satisfy its 
assertions, the value would be circled. 

Microsoft Excel, a popular commercial spreadsheet 
application, has a data validation feature integrated into the 
environment that bears a surface-level similarity to the 
assertions in our environment. Excel, however, does not 
support propagation of assertions to other cells, does not 
automatically display assertions, and does not automa- 
tically update the display of assertion violations when 
changes are made. That is, the data validation feature is 
primarily an optional data entry check that can be invoked 
from time to time by the user. This is quite different from 
our approach, because our assertions combine into a 
network that is the basis of an ever-present reasoning sys- 
tem that gives continuous and up-to-date visual feedback. 

In addition to the integration of assertion feedback with 
the program source code (formulas) and values, in our pro- 
totype environment there is also testing feedback integrated 
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in the same fine-grained way via our already incorporated 
spreadsheet testing methodology known as WYSIWYT 
("What You See is What You Test") [11, 24]. WYSIWYT 
implements a dataflow test adequacy criterion based on 
definition-use (du) associations, which associate formula 
subexpressions that define a cell's value (definitions) with 
references to the cell in other cells' formulas (uses); see 
[24] for formal definitions. The criterion for complete 
"testedness" under this methodology is that each execu- 
table du-association in the spreadsheet be exercised by test 
data in such a way that the du-association contributes (di- 
rectly or indirectly) to the display of a value that is subse- 
quently pronounced correct by the user. Users can convey 
to the system that a cell's value is correct for the spread- 
sheet's inputs by checking the checkbox in the corner of 
the cell. This results in a change of cell border color, which 
represents the testedness of a cell. Red means untested, 
purple shades mean partially tested, and blue means fully 
tested. There is also a "percent tested" indicator at the top 
of the spreadsheet. These devices are always kept up-to- 
date. For example, when a formula is modified, the cell 
border turns red because the cell is untested; borders of 
cells that reference the modified cell also turn red. Because 
a principle of our end-user software engineering approach 
is that assertions be integrated with testing support, the 
investigation of assertions in this paper is in the context of 
WYSIWYT. 

2.5 Example 

We close this section by presenting a simple illustration 
of our prototype assertion mechanism in the context of the 

Forms/3 research spreadsheet language [6]. Figure 3(a) 
shows a portion of a Forms/3 spreadsheet that converts 
temperatures in degrees Fahrenheit to degrees Celsius. The 
input_temp cell has a constant value of 200 in its formula 
and is displaying the same value. There is a user assertion 
on this cell that limits the value of the cell to between 32 
and 212. The formulas of the a, b, and output_temp cells 
each perform one step in the conversion, first subtracting 
32 from the original value, then multiplying by five and 
finally dividing by nine. The a and b cells have assertions 
generated by the system (as indicated by the computer 
icon) which reflect the propagation of the user assertion on 
the input_temp cell through their formulas. The 
spreadsheet's creator has told the system that the 
output_temp cell should range from 0 to 100, and the 
system has agreed with this range. This agreement was 
determined by propagating the user assertion on the 
input temp cell through the formulas and comparing it 
with the user assertion on the output_temp cell. 

Suppose a user has decided to change the direction of 
the conversion and make it convert from degrees Celsius to 
degrees Fahrenheit. A summary follows of the behavior 
shown by an end user in this situation in a study we 
conducted early in our design of the approach [28]. The 
quotes are from a recording of the subject's commentary. 

First, the user changed the assertion on input_temp to 
range from 0 to 100. This caused several red violation 
ovals to appear, as in Figure 3(b), because the values in 
input_temp, a, b, and output_temp were now out of range 
and the assertion on output temp was now in conflict with 
the previously specified assertion for that cell. The user 
decided "that's OK for now," and changed the value in 

r 
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Figure 3: Example at three points in the modification task. 
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input_temp from 200 to 75 ("something between zero and 
100"), and then set the formula in cell a to "input_temp * 
9/5" and the formula in cell b to "a + 32". 

At this point, the assertion on cell b had a range from 32 
to 212. Because the user combined two computation steps 
in cell a's formula (multiplication and division), the correct 
value appeared in cell b, but not in output_temp (which 
still had the formula "b / 9"). The user now chose to deal 
with the assertion conflict on output_temp, and clicked on 
the guard icon to view the details in the graphical syntax. 

Seeing that the Forms/3 assertion specified 3.5556 to 
23.556, the user stated "There's got to be something wrong 
with the formula" and edited output_temp's formula, 
making it a reference to cell b. This resulted in the value of 
output_temp being correct, although a conflict still existed 
because the previous user assertion remained at 0 to 100. 
Turning to the graphical syntax window, upon seeing that 
Forms/3's assertion was the expected 32 to 212, the user 
changed the user assertion to agree, which removed the 
final conflict. Finally, the user tested by trying 93.3333, the 
original output value, to see if it resulted in approximately 
200, the original input value. The results were as desired, 
and the user checked off the cell to notify the system of the 
decision that the value was correct, as in Figure 3(c). 

3. Experiment 

Our initial think-aloud study provided early insights into 
five end users' use and understanding of assertions, but did 
not statistically evaluate effectiveness. Thus, to investigate 
empirically whether and how this approach to assertions 
would increase users' effectiveness at eliminating faults, 
we conducted a controlled experiment involving 59 sub- 
jects to investigate the following research questions: 

Will assertions users be more effective debuggers? 
Will users understand assertions? 
Will assertions help users judge the correcthess of their 

programs (spreadsheets) ? 

We decided to isolate as much as possible the assertion 
effects (dependent) variables from that of user choice 
(whether or not to use assertions), which is also a depend- 
ent variable. The effectiveness results could have been con- 
founded if we also required subjects to choose to master 
assertion entry. By largely eliminating user choice from 
this experiment as a factor, we gained high assurance that 
assertions would be present in the tasks, which is what en- 
abled us to measure effectiveness and other effects of 
assertions. In a separate experiment reported elsewhere 
[31 ], we investigated user choice to use assertions, which 
we discuss briefly in Section 5. 

3.1 Procedures 

The experiment was conducted in a Windows computer 
lab. The subjects were seated one per computer. Prior to 
running the experiment, we conducted a four-subject pilot 
study to test the experimental procedures and materials. 

At the beginning of the experiment, the subjects filled 
out a background questionnaire. The session continued 
with a 35-minute tutorial to familiarize subjects with the 
environment, in which they worked on two spreadsheets 
along with the instructor. Subjects worked in identical end- 
user software engineering environments, except that the 
Treatment group (two sessions) had the assertions feature 
in their environment whereas the Control group (two ses- 
sions) did not. To reduce memorization skills as a factor, a 
quick-reference sheet listing the environment's features 
was provided to the subjects. The sheet remained with 
them throughout the experiment, and they were allowed to 
take notes on it. To ensure that both groups had equal time 
familiarizing themselves with their environments, we bal- 
anced the time spent presenting assertions to the Treatment 
group by providing additional hands-on practice time to the 
Control group. 

After the tutorial, subjects began their experimental 
tasks of debugging a grades spreadsheet (20 minutes) and a 
payroll spreadsheet (15 minutes). The use of two spread- 
sheets reduced the chances of obscuring the results because 
of any one spreadsheet's particular characteristics. The 
tasks necessarily involved time limits, to make sure sub- 
jects would work on both spreadsheets, and to remove pos- 
sible peer influence of some subjects leaving early. The 
time limits were drawn from times we observed to be re- 
quired by the pilot study's subjects. The experiment was 
counterbalanced with respect to problem to prevent 
learning effects from affecting the results: all subjects 
worked both problems, but half of each group debugged 
the problems in the opposite order. 

Initially, no assertions were on display for either prob- 
lem. The Treatment subjects' scenario was that a previous 
user had devised assertions for some of the cells, which 
subjects could use by clicking that cell's "see user guard" 
button. Clicking this button had the same effect as if a 
helpful user had immediately typed in a user assertion for 
that cell, but eliminated users having to learn how to enter 
assertions, or choosing to go to that much trouble. We 
decided on this procedure instead of having the assertions 
already present, because the approach is for an interactive 
environment, in which assertions are likely to be entered 
and dealt with incrementally. Other than the button, no 
other assertion editing devices were available. Once an 
assertion had been entered via the button, it was 
propagated and displayed as described in Section 2. 

At the end of each task, subjects were given a post-task 
questionnaire which included questions assessing their 
comprehension and attitudes about the features they had 
used, and also questions in which they self-rated their per- 
formance. Besides the questionnaire responses, data in- 
cluded the subjects' actions, which were electronically 
captured in transcript files, and their final spreadsheets. 

3.2 Subjects 

The subjects were non-computer science students who 
had little or no programming experience. The 59 subjects 
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were randomly divided into two groups: 30 in the Treat- 
ment group and 29 in the Control group. Of  the 59 
subjects, 23 were business students, 22 came from a wide 
range of sciences (such as psychology, biology, geography, 
pharmacy, and animal science), and the remaining 14 came 
from a variety of other non-computer science majors. The 
average (self-reported) GPA of the Control group was 
lower than that of the Treatment group but there was no 
statistically significant difference. Roughly 60% of the 
subjects had a little programming experience, due to the 

fact that it is common these days for business and science 
students to take a high school or college class in program- 
ming. Statistical tests on subject data showed no significant 
differences between the Treatment group and Control 
group in any of these attributes. 

3.3 P r o b l e m s  

The debugging problems were Grades (Figure 4) and 
Weekly Pay (not shown due to space limitations). Subjects 
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were given a written description of each spreadsheet. The 
description explained the functionality of the spreadsheet, 
and included the ranges of valid values for some of the 
cells, so that all subjects would have exactly the same in- 
formation about the spreadsheets, regardless of whether 
their environment included assertions. The subjects were 
instructed to "test the spreadsheet thoroughly to ensure that 
it does not contain errors and works according to the 
spreadsheet description. Also if you encounter any errors in 
the spreadsheet, fix them." 

The Grades spreadsheet (24 cells) calculates the grades 
of two students, one graduate and the other undergraduate, 
with different grading criteria. There are 11 faults in seven 
cells of this spreadsheet. The Grades spreadsheet was laid 
out such that it required scrolling, to ensure that not all 
assertions and assertion conflicts would necessarily be 
visible at any one time. The Weekly Pay spreadsheet (19 
cells) calculates the weekly pay and income tax withhold- 
ing of a salesperson. There are seven faults in five cells of 
this spreadsheet. 

To facilitate comparing the impact of assertions with 
whatever other mechanisms subjects might use to identify 
and correct faults, we devised assertions that would expose 
only some of the faults. To avoid biasing results against the 
Control group, we included assertions only for cells whose 
ranges were explicitly stated on the problem description. In 
choosing which ranges to state, we included all ranges that 
could be clearly justified without a calculator. Via the but- 
ton, all Grades cells had user assertions available, which 
could expose only 8 of the 11 faults. For Weekly Pay, user 
assertions able to expose 3 of the 7 faults were available. 

3.4 Fault  types  

Allwood [1] classified faults in spreadsheets as 
mechanical, logical and omission faults, and this scheme is 
also used in Panko's work [20]. Under Allwood's categori- 
zation, mechanical faults were further classified as simple 
typographical errors or wrong cell references in the cell 
formulas. Mistakes in reasoning were classified as logical 
faults. Logical faults in spreadsheets are more difficult than 
mechanical faults to detect and correct, and omission faults 
are the most difficult [1]. An omission fault is information 
that has never been entered into the formulas. 

We drew from this research by including faults from 
each category in each problem. However, the precise dis- 
tinctions between logical and mechanical are not clear for 
some types of faults in end-user programming. For exam- 
ple, when computing an average, does dividing by the 
wrong number mean the subject typed it wrong, or that 
they are confused about computing averages? In our think- 
aloud studies we have collected data in which end-user 
subjects made exactly this error for both of these reasons. 
Thus, we combined the first two categories into one and 
then, to be sure coverage of both would be achieved, in- 
cluded several different subtypes under it: incorrect refer- 
ences (which Allwood would classify as mechanical), 
incorrect constants or an omitted character (could be either 

Table 1: Classifications of seeded faults. 
Omission 

Grades 2 
Weekly 1 
Pay 

Logical and Mechanical 
Ref. Const. Oper- Extra 

or ator subexpr 
char. 

2 3 3 1 
2 2 2 0 

logical or mechanical), incorrect operators or application of 
operators (which Allwood would classify as logical), and 
an extra subexpression (logical). We also included faults 
from the third category, omission faults. Table 1 shows a 
summary of the spreadsheets' faults. 

Another classification scheme we have found to be use- 
ful in our previous research involves two fault types: refer- 
ence faults, which are faults of incorrect or missing refer- 
ences, and non-reference faults, which are all other faults. 
In this study, the omissions and incorrect references are 
reference faults (7 in total), and the remaining types are 
non-reference faults (11 in total). 

The faults not exposed by assertions were distributed 
across Table l ' s  categories, and were also assigned in pro- 
portion to the reference/non-reference categorization. 

4. Results 

4.1 D e b u g g i n g  e f fec t iveness  

4.1.1 Accuracy by subject group.  We chose to analyze 
the act of identifying a fault separately from the act of cor- 
recting it. The reason was that there is little information in 
the literature about end users'  abilities to correct a fault 
even if they have managed to identify it, a gap we hope to 
help fill. For cells containing exactly one fault, we defined 
a fault to have been identified if the subject changed the 
formula containing the fault and to have been corrected if 
the changes resulted in a correct formula. When a cell 
contained two faults, we partitioned the formula into two 
disjoint subexpressions, one containing each fault. Then if 
the particular fault 's  subexpression was changed (or 
changed correctly), the fault was defined to be identified 
(or corrected). For example, in cell U_EffHW the original 
formula in the cell is (U_Sumlst2nd+U_HW2)/3, and the 
correct formula is (U_Sumlst2nd+U_HW3)/2. The two 
faults are adding U_HW2 instead of U_HW3 and dividing 
by 3 instead of 2. The two parts to the formula are the sum 
and the division. Hence a subject would be credited with 
identifying (correcting) the fault in the sum if the sum 
subexpression was changed (changed correctly) and 
credited with identifying (correcting) the fault in the 
division if the divisor was changed (changed correctly). 

We now state the following (null) hypotheses as 
statistical vehicles for investigating the accuracy question: 

Hi:  Identify: There will be no difference between the 
Treatment group's and Control group's number of 
faults identified. 
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H2: Correctness: There will be no difference between the 
Treatment group's and Control group's number of 
faults corrected. 
The faults identified and corrected are summarized in 

Table 2. A two-factor analysis of variance with repeated 
measures on the problem (Grades and Weekly Pay) and 
group (Control and Treatment) showed that the Treatment 
subjects both identified significantly more faults (F=16.59, 
df=l,  p=.0001) and corrected significantly more faults 
(F=11.74, df=l ,  p=.0011) than did the Control subjects. 
Thus, hypotheses H1 and H2 must both be rejected. 

Both the Treatment and Control subjects corrected 
nearly equal percentages of the faults they identified (Table 
3). That is, when they found the faults, they generally 
succeeded at correcting them. In fact, in the Grades 
problem the percents corrected once identified were 
exactly the same for subjects with assertions as for those 
without assertions, and the difference was very small in the 
Weekly Pay problem. This suggests that the assertion 
advantages in identifying faults were enough to produce the 
eventual advantages in correcting them. 

4.1.2 Accuracy by fault type. Did assertions especially 
help with any particular type of faults? Fisher's Exact Test 
showed that the Treatment group identified significantly 
more instances on seven of the 18 faults, but they were not 
all of the same type. In fact, these faults covered four of the 
five types of faults we seeded (recall Table 1): three were 
operator or operator application fanlts, two were incorrect 
constants, one was an omission, and one was an incorrect 
reference. Thus, according to Allwood's classification 
scheme, assertions contributed to effectiveness across a 
wide range of faults. 

Considering instead the reference/non-reference 
classification of faults reveals an interesting attribute of 
assertions' effectiveness: subjects in the Treatment group 
were significantly more effective at identifying and 
correcting non-reference faults in both problems (Grades 
corrected: F=9.67, df=l,  p=.0029; Weekly Pay corrected: 
F=8.26, df=l ,  p=.0057). There was also significance for 
reference faults on one of the problems (Grades corrected: 

Table 2: Mean number of faults identified and 

Grades (11 faults) 
Control 
Treatment 

corrected. 
l Identified Corrected 

5.69 4.83 
8.07 6.83 

Weekly Pay (7 faults) 
Control 4.97 4.59 
Treatment 5.90 5.70 

Table 3: Percent of identified faults that were 
eventually corrected. 

Grades I Weekly Pay 
Control (n=29) 84.8% I 92.4% 
Treatment (n=30) 84.8% I 96.6% 

F=4.67, dr=l,  p=.0348; Weekly Pay corrected: F=3.72, 
df=l, p=.0506). In contrast to this, previous empirical work 
regarding the effectiveness of the WYSIWYT testing 
methodology (which is based on a dataflow adequacy 
criterion) on detecting faults has revealed that 
WYSIWYT's advantage has been primarily in identifying 
and correcting reference faults [7]. 

Since both groups' subjects had WYSIWYT available 
to them, which is strong on reference faults, it is not 
surprising that the reference fault improvement brought by 
assertions was significant on only one problem. The more 
interesting result is that assertions helped so significantly 
with non-reference faults, suggesting that the addition of 
assertions into the environment fills a need not met 
effectively by the dataflow testing methodology alone. 

4.1.3 Debugging speed 
H3: Speed: There will be no difference between the 

Treatment group's and Control group's speed in 
correcting the faults. 
We partitioned the task time into 5-minute blocks--the 

first 5 minutes, second 5 minutes, and so on--and counted 
the number of faults that had been corrected by the end of 
each partition. Since subjects had more time on Grades 
than on Weekly Pay, there are four partitions for Grades 
and three for Weekly Pay. As Figure 5 shows, the Treat- 
ment subjects identified and corrected faults faster in each 
of the 5-minute blocks. The Treatment subjects' advantage 
began very early. The correctness differences were signifi- 
cant for the Weekly Pay problem at the 5-minute mark 
(identified F=3.70, dr=l, p=.0595; corrected F=4.19, dr=l, 
p=.0453), and the subjects were significantly more effec- 
tive at identifying and correcting faults during the first 5 
minutes for the Grades problem (identified F=13.04, dr=l, 
p=.0006; corrected F=15.67, df=l,  p=.0002). Thus, H3 is 
rejected. 

4 ].48 
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Figure 5: Average faults identified by each group 
(Ci, Ti) and corrected (Cc, Tc). Each block covers 

5 minutes (first 5-minute period at the bottom, 
etc.), and the data value in it is the number of 

faults identified/corrected during that time period. 
Left graph: Grades. Right graph: Weekly Pay. 
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4.2 Did the users understand assertions? 

Assertions had significant positive impacts on subjects' 
abilities to remove the faults, but to what extent did they 
understand what the assertions meant? At least some 
understanding is important, because research in on-line 
trust has shown that users must believe they understand the 
system's reasoning, at least roughly, in order to trust its 
results enough to use them effectively [4, 8]. 

To help assess the subjects' understanding, we asked 
several questions about the meanings of the different 
devices in the context of a two-cell example spreadsheet. 
The results, which are summarized in Table 4, imply that 
the Treatment subjects understood the meaning of the 
assertion features reasonably well. The first four questions 
were multiple choice. The last question,-in which the 
subjects were required to fill in the result of propagating 
cellA's assertion (0 to 5) through cellB's formula (celia + 
10), was the most difficult for them, but 53% answered it 
correctly (10 to 15). An additional 23% answered "0 to 
15." The fact that this additional 23% were correct on the 
upper limit seems to indicate that they had a rough, but 
imperfect, idea of how propagation worked. 

One strong indicator that the subjects believed their 
understanding was "good enough" for reliance upon 
assertions can be found in their ratings. Subjects rated the 
helpfulness of three assertion features and also two testing 
features. Treatment subjects rated the assertion conflicts 
the most helpful of all the features. On a scale of 1 to 5 (not 
helpful to very helpful), their ratings for the assertion 
conflicts averaged 4.4 (median 5). See Table 5. 

Table 4: Percentage of correct responses given 
by Treatment subjects. (Correct responses are 

shown in parentheses.) 
Question 
What does the red oval on celiA mean? (The 93% 
value is outside the valid range.) 
What does the little stick figure in the celiA 83% 
guard mean? (The user supplied the guard.) 
Why is there a stick figure and a computer 87% 
on cellB's guard? (The guard was supplied 
by both Forms/3 and by the user.) 
What does the red oval on the cellB guard 63% 
mean? (The user and Forms/3 disagree on 
the valid range(s) for this cell.) 
Given the formula in cellB and the guard on 
celiA, what do you think Forms/3 says are 
the valid range(s) for cellB? (10 to 15) 

% correct 

53% 

Table 5: Subjects' helpfulness ratings. 
Assertion "Tested"j System- User % 
conflicts border generated tested 

colors assertions assertions 

Control : N/A 4.2 I N/A N/A I 2.9 
Treatmentj 4.4 4.3 4.2 4.0 3.6 

4.3 Judging correctness 

After the subjects had completed the experimental tasks, 
we asked them to what extent they believed they had 
managed to identify and to correct all the faults. In the 
practice of software development, it is often this question 
that the developer uses to decide whether the software is 
ready to use. For this reason, helping users make 
reasonable judgments in answer to this question can be 
important in preventing software from going into use 
prematurely. 

The questionnaire asked them to rate on a 1 ("not 
confident") to 5 ("very confident") scale, for each problem, 
how confident they were that they had identified and 
corrected all the faults. The issue relevant to the 
effectiveness of assertions is to what extent these self- 
ratings were correlated with correctness. To this end, we 
compared self-ratings to actual performance. 

H4: Self ratings of correctness: There will be no difference 
between Control versus Treatment subjects' self-ratings 
as predictors of correctness (number of faults in the 
spreadsheets at the end of the experiment). 

Regression analysis is the appropriate test for a 
predictive question of this type. The results for correcting 
the faults are shown in Table 6; the results for identifying 
the faults (not shown) are similar. The regression 
coefficient is the slope of the least squares fitting of the 
ratings against the faults that were corrected. As the table 
shows, the Treatment group gave self-ratings that were 
statistically significant predictors of actual performance, 
with regression coefficients that were significantly 
different from zero for both problems. (This was true also 
for identifying the faults.) The Control group's self-ratings, 
on the other hand, were ineffective as predictors, and their 
regression coefficients were not significantly different 
from zero. In fact, for one problem, the regression 
coefficient is slightly negative, indicating that the Control 
group's predictions had a slight tendency to be the opposite 
of their actual performance. Clearly, H4 is rejected. 

This result is important. It is a well known and robust 
result  f rom behavioral  science that humans are 
overconfident about the work they do, and that this 
tendency is extremely resilient. In the spreadsheet literature 
this tendency has become known as overconfidence. Such 
overconfidence has been widely reported in many 
spreadsheet studies (surveyed in [20]), in the Forms/3 envi- 
ronment [30], and in studies of software professionals [14]. 

Table 6: Self-ratings as correctness predictors. 
Regression I df Significance 

coeff. I 
Grades 

Con~ol 0.168 
Treatment 0.210 

Weekly Pay 
Control -0.038 
Treatment 0A77 

1.434 27 p = .1645 
2.188 28 p = .0375 

-0.261 27 p = .7963 
2.165 28 p = .0394 
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Although overconfidence of spreadsheet accuracy has pre- 
viously been reduced to some extent by the WYSIWYT 
testing methodology, the reductions have not been 
sufficient to correlate in a statistically significant way with 
accuracy [13]. The improved level of judgment associated 
with assertions thus fills a gap in end-user programming, 
which could prevent some of their software from going 
into production use too early. 

5. Motivating users to enter assertions 

We have explained that we designed our experiment to 
isolate effectiveness of assertions when they were present, 
and thus while subjects had a choice as to whether and 
which assertions were present, they did not have to actually 
enter them. 

To address the issue of motivating users to author their 
own assertions, in parallel with this experiment we began 
devising an approach for gently inviting end users to enter 
and use assertions. Our approach attempts to first arouse 
users'  curiosity and then to encourage them to follow 
through, using a strategy comprised of an intertwined 
collection of surprises, explanations, and rewards. If the 
users become curious about assertions, they can obtain on- 
line explanations about how to go about entering 
assertions. The details of this strategy and how we have 
prototyped it are given in [31]. 

Using this strategy, in a follow-up experiment, we 
focused specifically on the question of whether users will 
author their own assertions via the concrete syntaxes of 
Section 2. In the follow-up experiment, assertions were not 
explained or even mentioned in the tutorial. Even more 
important, no pre-wfitten assertions were provided to them. 
Instead, the tutorial instructed users to explore the 
environment in any way they wished, and gave them time 
to practice doing so. The follow-up experiment is reported 
in [31]. To briefly summarize its results, in their work on 
the same problems as for the experiment reported here, 15 
of the 16 subjects (94%) did choose to author their own 
assertions, and once they entered one they entered more, 
averaging 18 assertions per subject. Further, 95% of the 
assertions they entered were correct. 

6. Threats to validity 

We attempted to address threats to internal validity for 
this study by randomly distributing subjects among the 
groups and statistically checking the distribution for 
significant differences, by including two problems and 
counterbalancing them, by distributing the seeded faults 
among a variety of fault types, by equalizing training time, 
and by selecting problems from familiar domains. 

As in most controlled experiments, however, threats to 
external validity are more difficult to address given the 
need to control all other factors. For example,  the 
spreadsheets used may seem rather simple, but most 
subjects did not achieve 100% correctness of  their 
formulas, indicating that the spreadsheets were not too 

simple for the amount of time given. Also, although the 
prototype and experiment included only constants as 
assertion operands, we do not view this as a threat to 
validity, because the assertions are fairly powerful even 
with this restriction. However, the faults we used to seed 
the spreadsheets may not have been representative of 
formula faults in real-world spreadsheets. 

The fact that the experiment included explicit time 
limits is a threat to external validity. Explicit t ime limits 
were necessary to eliminate the internal threat of  subjects 
stopping only because other subjects were finishing and 
leaving. In the real world, the amount of time available for 
debugging is constrained by time pressures, but explicit 
time limits do not ideally simulate these time pressures. 

The short tutorial prior to the experiment included an 
informal explanation of how system-generated assertions 
are created through propagation, but no such explanation 
would be likely in the real world. We have begun to 
address this concern with our surprise-explain-reward 
strategy (Section 5), which now includes the essential 
information about assertions in a network of context- 
sensitive explanations [3, 31]. The subjects in the follow- 
up experiment seemed to understand assertions enough to 
use them effectively, but further empirical work after the 
explanation system is more mature is required. 

The current experiment did not ask users to author their 
own assertions. Although the follow-up experiment  
addresses that issue, in neither experiment did the users 
write their own spreadsheets "from scratch." This approach 
was necessary for fair quantitative comparisons of 
spreadsheet errors, and it is consistent with the real-world 
situation in which the user inherits a spreadsheet from a co- 
worker. However, the results of this experiment may not 
generalize to spreadsheets a user creates alone. 

7. Conclusion 

We have presented an approach for supporting 
assert ions in end-user software,  focusing on the 
spreadsheet paradigm. Our assertions provide expressions 
about the results of cell executions--that is, postconditions 
on the executing cell and also preconditions to cells further 
downstream. Assertions can be generated by the user or the 
system. The concrete syntaxes by which assertions are 
represented look to users like simple points and ranges, but 
these syntaxes are sufficient to express an entire abstract 
assertion syntax of substantial power. 

To evaluate our approach empirically, we conducted a 
controlled experiment with 59 end-user subjects. The most 
important results were: 
• Assertions did indeed help end users debug more effec- 

tively and more efficiently. 
• The effectiveness boost applied across a wide range of 

fault types. Moreover,  assertions were extremely 
effective with non-reference faults, a class that had not 
been amenable to detection by our dataflow testing 
methodology for end users. 
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• Assertions clearly combated the well established ten- 
dency of end users toward overconfidence, by signifi- 
cantly improving their ability to judge whether they had 
done enough to ensure the correctness of their 
spreadsheets. 
Perhaps the most surprising result of all is that end users 

not only understood assertions, they actually liked them. 
They rated assertion conflicts as being more helpful than 
any other feature, and in a follow-up experiment, if 
subjects discovered assertions, they chose to enter quite a 
few of them. The facts that they understood and liked 
assertions are critical outcomes because of their importance 
in determining whether end users will ultimately use 
assertions in the real world. 
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