
There is room for a fifth role
in CBSD—that of end-user
developers positioned between
application assemblers and end
users. These end-user developers
are able to tailor applications at
runtime because they have both
domain expertise and technical
know-how, but they are not per-
ceived as programmers. They
would interact with applications
to adjust individual components
by tailoring techniques [5], and
modify existing assemblies of
components to create new func-

tionality [8]. Furthermore, they
can play a critical role when
large-scale component-based
systems have to be redesigned or
evolved as a result of changing
requirements [1].

We have adopted techniques
from software engineering and
HCI, going back to their pio-
neering visions, and interpreted
them in a user-oriented direc-
tion. Our goal is to provide a
components approach to end-
user development (EUD). The
work we present here addresses

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 59

Component technology can provide the reuse option
to the end user given a workable model and
implementation platform.

Component-based software development (CBSD) involves
multiple roles. Framework builders create the infrastructure
for components to interact; developers identify suitable
domains and develop new components for them; application
assemblers select domain-specific components and assemble
them into applications; and end users employ component-
based applications to perform daily tasks [7].

COMPONENT-BASED
TECHNOLOGIES FOR
END-USER DEVELOPMENT

By Anders I. Mørch, Gunnar Stevens,
Markus Won, Markus Klann, Yvonne Dittrich,
and Volker Wulf

I L L U S T R A T I O N B Y H A L M A Y F O R T H

60 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

how to ease the transition between using an applica-
tion and tailoring it at different levels of complexity.
We propose new metaphors and techniques for
selection and assembly of components.

McIlroy [4] recognized the need for component-

based systems in software engineering by adopting
techniques developed in the manufacturing indus-
try, such as black boxing, subassemblies, and vari-
ability. Black boxing would ensure a component had
a well-defined interface, built and tested according
to a specification that could be documented in a
parts catalogue. Subassemblies referred to collections
of components that could be combined with other
components, and variability referred to the ease with

which models or sizes of standard components could
be selected [4]. He expected software systems to be
constructed by combining reusable, off-the-shelf
components, such as transistors, capacitors, and
integrated circuits combined on a circuit board.

Kay [2] pioneered the ideas of domain-specific
components (GUI objects) and end-user empower-
ment with computer applications. He made an anal-
ogy with the painters’ palette and canvas and
suggested application developers should provide end
users with domain- specific design environments
that would empower them to create a wide range of
products within selected domains, such as musical
compositions and circuit design diagrams [2]. The
domain specificity of these environments would
allow users to gain better control over their applica-
tions because the users’ tasks were not automated,
but left open-ended for them to explore the domains
with their expertise and creativity.

The techniques of black boxing, variability, com-
ponent-based subassemblies, and design environ-
ments have been widely accepted in software
engineering and HCI and proved influential for
CBSD. For example, JavaBeans components can be

integrated by direct manipula-
tion techniques in visual
builders embedded in integrated
development environments
(IDEs), and the parameters of
these components can be modi-
fied in property sheets. How-
ever, these environments are
built for professional develop-
ers, resulting in the following
shortcomings from the EUD
perspective:

• There is a discrepancy
between using an application

(runtime) and modifying it with an IDE (design
time);

• Metaphors that provide meaningful abstractions
for end users, allowing them to break up applica-
tions into suitable components and subassemblies
are missing;

• There is little support to gradually learn to build
or modify software components.

Bridging the Gap between Use and
Programming
The learnability issue is addressed by the concept of
“gentle slope,” that is, to modify a computer appli-
cation through its user interface end users should
only need to increase their knowledge by an amount

Type:

Pos-X:

Pos-Y:

Width:

Height:

Color:

100

100

50

30

Item: iTest2

Square
Save Cancel

Save Cancel

TestRectangle2

ShapesFile Edit Operations Tailor...

White

Title:

altMouseUp

altMouseDown

Line
Triangle
Oval
Rectangle
Test Rectangle 1
Test Rectangle 2
Test Rectangle 3

Presentation editor

Presentation editor

Name - Objektlage
Termine November 1998 - Eigener Schreibtisch
Termine September 1998 - Eigener Schreibtisch

Diplay windows

SQL: Select x Where x.Name Like "Ter

TermineName:

File Edit Tools Help
Search Tool (tailoring mode)

DokumentClass:

Search
Location

Figure 1. Gentle slope to customization in a drawing program.
Direct activation is accomplished by holding down a modifier
key while performing the normal interaction gesture on a user
interface object. All components (menus, menu items, and
graphical shapes) can be customized in the same uniform way.
The saved data is stored in an initialization file and reinstated
when the program is restarted [5].

Figure 2. The application here allows the user to search for
documents in different sections of a groupware. In tailoring mode
both visual and non-visual components are displayed. These
components can be grouped into assemblies and integrated by
connecting input and output ports. Empty circles indicate input
ports and filled circles indicate output ports.

proportional to the complexity of the modification
[3]. Intermediate techniques, such as parameteriza-
tion (end-user customization) and integration of
high-level building blocks were suggested to bridge
the gap between use and programming. Two tech-
niques we have experimented with are direct activa-
tion [9] and different levels of tailoring [5]. Direct
activation means that tailoring func-
tionality should be accessible from the
use context when the need for tailoring
occurs (see Figure 1 for an example).

Mørch [5] proposed three levels of
tailoring to gradually bridge the gap:
customization, integration, and exten-
sion. In the context of component-
based tailorability, customization means
to modify the parameters of existing
components, integration means to cre-
ate or modify assemblies of
components, and extension
means to create new compo-
nents by writing program
code. The integration of com-
ponents is more complex than
customization. When mas-
tered it provides a powerful
middle layer between cus-
tomization and programming.
For example, most IDEs
requires application assemblers
to know the components’
interface names when connecting two components,
which are associated with the methods of the com-
ponents’ constituent objects. However, tools to sup-
port the integration and reconfiguration of existing
components are important to provide in EUD envi-
ronments. Employing nested component structures
can further differentiate this middle layer, with sub-
layers providing the end users with increasingly more
control over their applications [8].

To address these issues, we used the FlexiBeans
component model1 and the corresponding FreEvolve
platform for computer-supported collaborative work
[6]. This platform provides an application program-
ming interface (API) for integrating tailoring func-
tionality with software components. Based on this
API, several visual tailoring environments were built
allowing end-user developers to modify an applica-
tion by reassembling components at runtime with-

out deep programming knowledge [8].
To visualize the ports and to provide meaning to

the act of connecting two components the visual
component integration formalism was created [8]
(see Figure 2). A connection between two compo-
nents is only valid if the types and names of ports
match. We believe this is a viable approach if the

port semantics cater to
both human and computer
requirements: aligning
with users’ understanding
of how two components
should interact and being
programmable on the
computer. Understanding
the semantics of integrat-
ing components in this
way can help end users
understand the capability
of black-boxed compo-
nents (such as, what they
can and cannot do). In order to allow for a gentle
slope in this environment, the FreEvolve platform
also provides hierarchically nested component struc-
tures. Composing higher-level components requires
mastering a lower level of complexity than is needed
for lower-level ones. Lower-level components can be
composed into an assembly and stored as a higher-
level component. Higher-level components can be

COMMUNICATIONS OF THE ACM September 2004/Vol. 47, No. 9 61

Alle Komponenten

Komponenten Editor

rc Komponenten

 Komponenten Explorer

 Komponenten

AlexCards

CardClient2
Iistenerport:CardListener

remoteport:RemoteCard
client:geocard.components.CardClient

Iistenerport:CardListener

answer:geocard.gui.com
answer:Answer

notice:geocard.gui.comp
Iistenerport:NoticeListener

notice:Notice

question:geocard.gui.com
Iistenerport:QuestionListener

question:Question

remoteport:RemoteCard
client:CardClient

client:CardClient

theme:Theme

gui:geocard.gui.GUI
themelistenerport:ThemeListener

questionlistenerport:QuestionListener

question:Question

answer:Answer

notice:Notice

symbol:geochat.ui.ChatSymbolqui
MessageListener

AlexCards

Name

Parameter Ports

Bindungen Beschreibung

Width
Height

int
int

480.0
57.0

Typ Wert Fehler?

CardClient2
client:geocard.components.CardClien
gui:geocard.qui.GUI

tyledOutputgeochat.ui.StyledChatOutput
MessageListener

login:geochat.ui.Login
login:Listener

chatinput:geochat.ui.Chatinput
preset:MessageListener

in:MessageListener

noticelistenerport:NoticeListener

1The FlexiBeans component model is based on JavaBeans. Extensions were made in
order to incorporate the specific requirements of EUD. For instance, the FlexiBeans
component model allows for typed and named event-based communication. Further-
more, an additional pull mechanism has been created to render the composition of
components in a user-friendly manner.

Figure 3. The TailorClient-
allows for modifying a

composition in three
different views. The upper

view displays only the
visual components and
allows for resizing and
positioning them. The

other views present the
interaction between

components (bottom right)
and an abstract tree view of

the nesting structure (bottom
left). The views are all

synchronized, meaning any
change made to the

composition in either of the
views is immediately

updated in the other views.

integrated by the same mechanisms as lower-level
ones and thus be reused in multiple configurations.

To test the viability of this approach to compo-
nent integration and EUD several prototypes were
developed, including a chat tool and a search tool—
a component-based groupware application with an
integrated tailoring environment. The tailoring
environment is directly accessible from the applica-
tion by a single mouse click from its use mode. We
wanted to see if this environment allowed a seamless
transition from use to tailoring. In the tailoring
mode all components (whether visible or nonvisible
at runtime) as well as the connections between com-
ponents are visible (see Figure 2). The findings from
the study indicate the approach works well when the
application has a high ratio of visual to nonvisual
components, since the context switch is minimal.
Without this high ratio the tailoring interface
becomes cluttered with objects and users will have
difficulty navigating.

To address the space contention problem we cre-
ated a new tailoring environment. In the Tailor-
Client [8] assemblies of components behind the
screen are presented by means of additional views
(Figure 3). Furthermore, the composition can be
checked for integrity. We have integrated two
integrity checking approaches—one is based on
constraints attached to the components; the other
analyzes the events passed among the components of
an assembly [8].

Challenges for Future Work
Component-based technologies are a promising
direction for further work in EUD as it allows end
users to tailor existing applications by assembling
high-level components. However, EUD must be
planned for as part of the CBSD life cycle. Frame-
work and component builders must develop func-
tionality designed for tailorability, that is,
components supporting direct activation of tailoring
tools, that are domain-oriented, and allow experi-
mentation without hazardous side effects. Cus-
tomization operations should allow sizes and models
(variability options) to be user-defined for the most
frequently used components. Finally, providing one
intermediary level of technological support, such as
high-level and nested components, might not be
enough to create a gentle learning slope. We antici-
pate multiple levels of intermediate techniques to
flourish in the future. The following issues represent
some areas for future work:

• How to select components not provided with the
application environment without requiring the

user to write programs or move outside of the use
context;

• How to combine different levels of tailoring, such
as combining customization and extension with
the integration of existing components; and

• How to support cooperation among different
users who have different qualifications, skills,
interests, and resources to carry out tailoring
activities.

References
1. Dittrich, Y., Lindeberg, O. Designing for changing work and business

practices. Adaptive Evolutionary Information Systems. N. Patel, Ed. Idea
Group Publishing, Hershey, PA, 2002.

2. Kay, A.C. Microelectronics and the personal computer. Scientific Amer-
ican. (Sept. 1977), 231–244.

3. MacLean, A., Carter, K., Lövstrand, L. and Moran, T. User-tailorable
systems: Pressing the issue with buttons. In Proceedings of the Conference
on Human Factors in Computing Systems. (Apr. 1990), 175–182.

4. McIlroy, M.D. Mass produced software components. Software Engi-
neering—NATO Science Committee Report. P. Naur and B. Randell, Eds.
(Garmisch, Germany, 1968), 138–155.

5. Mørch, A.I. Tailoring tools for system development. Journal of End User
Computing 10, 2, (Spring 1998), 22–30.

6. Stiemerling, O. Component-Based Tailorability. Ph.D. thesis (unpub-
lished). University of Bonn, Germany, 2000.

7. Vitharana, P. Risks and challenges of component-based software devel-
opment. Commun. ACM 46, 8 (Aug. 2003), 67–72.

8. Won, M., Stiemerling, O. and Wulf, V. Component-based approaches
to tailorable systems. End-User Development. H. Lieberman, F. Paternò,
and V. Wulf, Eds. Kluwer Academic, 2004 in press.

9. Wulf, V., Golombek, B. Direct activation: A concept to encourage tai-
loring activities. Behaviour & Information Tech. 20, 4 (2001), 249–263.

Anders I. Mørch (anders.morch@intermedia.uio.no) is an
associate professor of informatics at InterMedia, University of Oslo,
and is an adjunct professor in the Department of Information
Science and Media Studies at the University of Bergen, Norway.
Gunnar Stevens (stevens@fb5.uni-siegen.de) is a research
associate in the Department of Information Systems at the the
University of Siegen, Germany.
Markus Won (won@cs.uni-bonn.de) is a research associate in the
Department of Computer Science at the University of Bonn,
Germany.
Markus Klann (markus.klann@fit.fraunhofer.de) is a research
associate at the Fraunhofer Institute for Applied Information
Technology (FhG-FIT), Sankt Augustin, Germany.
Yvonne Dittrich (ydi@itu.se) is an associate professor in the
Department of Design and Use of IT at the IT University in
Copenhagen, Denmark, and the Department of Software Engineer-
ing and Computer Science at the Blekinge Institute of Technology,
Sweden.
Volker Wulf (wulf@fb5.uni-siegen.de) is an associate professor
in the Department of Information Systems at the University of
Siegen, and a senior researcher at the Fraunhofer Institute for
Applied Information Technology, Sankt Augustin. He also heads the
International Institute for Socio-Informatics, Bonn, Germany.

© 2004 ACM 0001-0782/04/0900 $5.00

c

62 September 2004/Vol. 47, No. 9 COMMUNICATIONS OF THE ACM

