
Building Environments for End-User Development and Tailoring

Maria Francesca Costabile’, Daniela Fogli’, Giuseppe Fresta’, Piero Mussio2, Antonio Piccinno’

Dipartimento di Informatica, Universita di Bari, Bari, Italy
Dipartimento di Elettronica per 1 ‘Automazione, Universitu di Brescia, Brescia, Italy

ISTI - CNR, Pisa, Italy
{costabile, piccinno]@di.uniba.it, flogli, mussio) @ing.unibs.it, g.jiresta@cnuce.cnr.it

1

2

Abstract
software Shaping Workshops (SSWs) described in this

paper are so f iare environments designed to support
various activities of End-User Development (EUD) and
tailoring. A design methodolog). to create easy-to-
develop-and-tailor Visual Interactive Svstems that are
organised as SSWs is illustrated. Users of an interactive
system are in many cases experts in some domain
different from Computer Science, who need to perform
some task with the aid ofthe computer system. The design
methodalagv allows users to directly collaborate to the
system design and tailoring process to face co-evolution
of users and systems. The srrategv feasibility is discussed,
outlining its implementation through a web-based
prototype.

1. Introduction

The low price of computing devices and the increasing
availability of lntemet connections have made a large
percentage of computer users able to and interested in
accessing computer-based applications. Most users have
become familiar with the basic functionality and interface
of computers. In addition, some results from the research
in Human-Computer Interaction (HCI) and usability have
started to penetrate certain product markets, thus
improving the levels of usability there.

However, we believe that while some substantial
progress has been made in improving the way users can
access interactive software systems, some phenomena
affecting the life of interactive products make difficult to
develop software systems acceptable in a working
environment. In HCI, it is often observed that “using the
system changes the users, and as they change they will use
the system in new ways” [I]. In turn, the designer must
evolve the system to adapt it to its new usages; we called
this phenomenon co-evolution of users and systems [2]. In
[3], it is observed that these new uses of the system
determine the evolution of the user culture and of herihis

models and procedures of task evolution, while the
requests from users force the evolution of the whole
technology supporting interaction.

Co-evolution stems from two main sources: a) user
creativity, i.e. users may devise novel ways to exploit the
system in order to satisfy some needs not considered in
the specification and design phase; and b) user acquired
habits, i.e. users may follow some interaction strategy to
which they are (or become) accustomed; this strategy must
be facilitated with respect to the initial design.

Co-evolution implies tailoring that, according to [4], is
‘?he activity of modifying an existing computer system in
the context of its use, rather than in the development
context”. This defmition emphasizes that users themselves
can tailor the system to their necessities. Tailoring stems
from a continuous adaptation of a system and is seen as
the indirect long-term collaboration between developers
and users. Tailoring should be driven by users (also called
end-users to make explicit that they are the final users of
applications developed for them) to exploit the potential
benefits of task-oriented and skill-based system
adaptations that only end-users can perform. However, a
trade-off to this approach is the variety of developed
applications to be maintained by software engineers. Our
proposal is also aimed at coping with this problem.

Thus, one fundamental challenge for the coming years
is to develop environments that allow people without
particular background in programming to develop and
tailor their own applications, still maintaining the
congruence within the different evolved instances of the
system. Over the next few years, we will be moving from
easy-to-use (which has yet to be completely achieved) to
easy-to-develop-and-tailor interactive software systems.

The ultimate aim is empowering people to flexibly
employ advanced information and communication
technologies within the future environments of ambient
intelligence. To this aim, the European Community has
recently funded EUD-Net, a network of Excellence on
End-User Development (EUD). Tpis paper provides the
following contributions to the research on EUD: 1) an

31

analysis of the need of developing software that a special
category of end-users, called domain-expert users, have;
2) a design methodology to build software environments
that allow EUD activities to such users. Domain-expert
users are professional people that are expert of a specific
application domain and want to use computer systems for
their activities, hut do not have expertise of computer
science or programming. The proposed design
methodology is the evolution of the design strategy
described in [5] [6] .

The paper is organized as follows: Section 2 provides
insights to the concept of EUD. In Section 3, an analysis
of needs of EUD that domain-expert users have, is
reported. Section 4 illustrates the Software Shaping
Workshop methodology. Section 5 discusses the
Interaction Visual Language used in the design
methodology. Section 6 presents an example of the
application of the SSW methodology to a real case.
Section 7 concludes the paper.

2. End-User Development

New technologies have created the potential to
overcome the traditional separation between end-users
and software developers. New environments able to
seamlessly move from using software to programming (or
tailoring) can be designed. Advanced techniques for
developing applications can be used by individuals as well
as by groups or social communities or organizations.

Some studies say that by 2005, there will be in USA 55
millions of end-users compared to 2.75 millions of
professional users [7]. End-users population is not
uniform, but it includes people with different cultural,
educational, training, and employment background,
novice and experienced computer users, the very young
and the elderly, people with different types of disabilities.
Moreover, these users operate in various interaction
contexts and scenarios of use and they want to exploit
computer systems to improve their work, but often
complain about the difficulties in the use of such systems.

Based on the activity performed so far within the EUD-
Net network of excellence, the following definition of
EUD has been proposed: '%nd-User Development is a set
of activities or techniques that allowpeople, who are non-
professional developers, at some point to create or modifi
a sofmare artfact". EUD means the active participation
of end-users in the software development process. In this
perspective, tasks that are traditionally performed by
professional software developers are transferred to the
users, who need to be specifically supported in performing
these tasks. The range of active user participation in the
software development process can range from providing
information about requirements, use cases and tasks,
including participatory design, to end-user programming.

Some EUD-oriented techniques have already been
adopted by software for the mass market such as the
adaptive menus in MS WordTM or some progranuning-by-
example techniques in MS Excel'". However, we are still
quite far from their systematic adoption.

EUD is based on the differences among end-users,
professional programmers and software engineers. There
are differences in training, culture, skill and technical
abilities, in the scale of problems to be solved, in the
processes, etc. However, there are some similarities. For
instance, managing the successive versions of a piece of
software is most probably a problem for software
engineers as managing successive versions of documents
with a word processor is a problem for end-users. Reports
or letters are often wTitten in several phases; a
businessman will write successive versions of a contract
that must be proofread by all parties; a home user will
reuse the same letter year after year when sending his or
her tax report, and just change some figures in the letter.
In these cases, clever or appropriately educated users
leam a simple technique aimed at helping them to manage
the successive versions: assigning a number to each
version. What about something of a greater complexity
than the numeration of versions? One cannot expect an
end-user to apply the techniques provided within the
software engineering field. Software engineering methods
and tools require knowledge of abstract models that end-
users do not have and that require specific training.
Consequently, an interesting line of research consists in
identifying new sets of techniques and tools that would be
the counterpart of software engineering for end-users:
sofhvare crafling. Within the EUD-Net activity, the
following research directions have been identified as
fertile for allowing end-users to crafr software: 1.
theoretical and empirical studies of what problems
addressed by software engineering transpose to EUD, why
and how; 2. studies to identify possibly existing problems
that are specific to EUD and are thus not addressed by
software engineering; 3. research on methods and tools
that would address the previously identified problems in
ways that are adequate for end-users: "lightweight
methods", tools to support them, and offering appropriate
user interfaces taking into account end-users tasks and
activities.

Our proposal of designing Visual Interactive Systems
(VISs) organised as environments called Software
Shaping Workshops, which will be illustrated in Section
4, is in the direction of point 3 above.

3. Emerging needs of EUD

l

We often work with end-users that are experts in their
field, that need to use computer systems for performing
their work tasks. but that are not and do not want to

\

32

become computer scientists. This has motivated the
definition of a particular class of end-users, that we call
domain-expert users (d-experts for short): they are experts
in a specific domain, not necessarily experts in computer
science, who use computer environments to perform their
daily tasks. They have also the responsibility for induced
errors and mistakes.

In our work, we primarily address the needs of
communities of d-experts in scientific and technological
disciplines. These communities are characterized by
different technical methods, languages, goals, tasks, ways
of thinking, and documentation styles [8]. The members
of a community communicate among them through
documents, expressed in some notations, which represent
(materialize) abstract or concrete concepts, prescriptions,
and results of activities. OAen, dialects arise in a
community, because the notation is applied in different
practical situations and environments. For example,
technical mechanical drawings are organized according to
standard rules which are different in Europe and in USA
[9]. Explicative annotations are written in different
national languages. Often the whole document (drawing
and text) is organized according to guidelines developed
in each single company. The correct and complete
understanding of a technical drawing depends on the
recognition of the original standard as well as on the
understanding of the national (and also company
developed) dialects.

Recognizing users as d-experts means recognizing the
importance of their notations and dialects as reasoning
and communication tools. It also suggests to develop tools
customized to a single community. Supporting co-
evolution requires in turn that the tools developed for a
community can he tailored by its members to the newly
emerging requirements [4]. Tailoring can he performed
only after the system has been released and therefore
when it is used in the working context. In fact, the contrast

often emerging between the user working activity, which
is situated, collaborative and changing, and the formal
theories and models that underlie and constitute the
software system can be overcome by allowing users to
adapt themselves the system they are using.

Recognizing the diversity of users calls for the ability
to represent a meaning of a concept with different
materialization, e.g. text or images or sound, and to
associate to a same materialization a different meaning
according, for example, to the context of interaction. For
instance, a same interface of a distributed system in the
automation field, is interpreted in different ways by a
technician and a worker. These two d-experts are however
collaborating to get a common goal. For this, they use a
same set of data, which is however represented according
to their specific skills. This is a common case: often
experts work in a team to perform a common task. The
team might be composed by members of different suh-
communities, each sub-community with different
expertise. Members of a sub-community should need an
appropriate computer environment, suitable to them to
manage their own view of the activity to be performed.

When working with a software application, d-experts
feel the need to perform various activities that may even
lead to the creation or modification of software artefacts,
in order to get a better support to their specific tasks, thus
being considered activities of EUD. The need of EUD is a
consequence of user diversity and user evolution we have
discussed. Moreover, the interactive capabilities of new
devices have created the potential to overcome the
traditional separation between end-users and software
developers. New environments able to seamlessly move
between using and programming (or customizing) can be
designed.

Within EUD, we may include various tailoring
activities. Indeed, tailoring activities are defined in
different ways in the literature; they include adaptation,

Table 1. Two classes of domain-experts activities, depending on whether the activity implies creating or
modifvina a software artefact (Class 2) or not (Class II I1 11

33

customization, end-user modification, extension,
personalization, etc. These definitions partly overlap with
respect to the phenomena they refer to, while often the
same concepts are used to refer to different phenomena. In
[IO], tailorability is defined as the possibility of changing
aspects of an application's fimctionality during the use of
an application, in a persistent way, by means of tailored
artefacts; the changes may be performed by users that are
local experts. Tailorahility is very much related to
adaptability. Different meanings are associated to
tailorability and adaptability. To avoid ambiguity, two
classes of d-expert activities have been proposed in [IO]:

Class 1. It includes activities that allow users, by setting
some parameters, to choose among alternative behaviours
(or presentations or interaction mechanisms) already
available in the application; such activities are usually
called parameterisation or customization or
personalization.

Class 2. It includes all activities that imply some
programming in any programming paradigm, thus creating
or modifying a software artefact. Since we want to he as
close as possible to the human, we will usually consider
novel programming paradigms, such as programming by
demonstration, programming with examples, visual
programming, macro generation.

In Table I , we provide examples of activities of both
classes from experiences of participatory design work-
shops in two domains, biology and earth science [I I]:

4. Software Shaping Workshops

The Software Shaping Workshop (SSW) methodology
we have developed to design VIS considers the following
features: I) adopting the user notation in the system
development; 2) offering different views of the activity to
the various members of the same community; 3) allowing
end-users to participate to system tailoring; 4)
guaranteeing a gentle slope to complexity. The latter
means that, in order to be acceptable by its users, the
system should avoid big steps in complexity and keep a
reasonable trade-off between ease-of-use and
expressiveness. Systems might offer for example different
levels of complexities, going from simply setting
parameters to integrating existing components, up to
extending the system by programming new components
[14]. To feel comfortable, users should work at any time
with a system suitable to their specific needs, knowledge,
and task to perform. To keep the system easy to learn and
easy to work with, only a limited number of functionalities
should be available at a certain time to the users, those
that they really need and are able to understand and use.
The system should then evolve with the users, thus
offering them new functionalities only when needed.

More precisely, the methodology is aimed at

generating software environments that appear to their
users as workshops, providing them with the tools,
organized on a bench, that are necessary to accomplish
their specific activities. Users work in analogy to artisans,
such us blacksmiths or joiners, i.e. users carry out their
work using virtual tools that resemble their real ones.
SSWs allow users to create or modify software artefacts
without the burden of using a traditional programming
language, hut using high level visual languages tailored to
users' needs. Moreover, users get the feeling of simply
manipulating the objects of interest in a way similar to
what they might do in the real world. Indeed, they are
creating an electronic document through which they can
perform some computation, without writing any textual
program code.

In a SSW, users interact by using a formal version of
their traditional languages and tools. In other words, the
SSW approach provides each sub-community with a
personalized workshop, called application workshop.
Using an application workshop, d-experts of a suh-
community can work out data from a common knowledge
base and produce new knowledge, which can be added to
the common knowledge base. All the data available for
the community are accessible by each d-expert using the
specialist notation of its sub-community.

The application workshops are designed by a design
team composed by various experts, who participate to the
design using workshops tailored to them. These
workshops are called system workshops and are
characterized by the fact that they are used to generate or
update other workshops. Using a system workshop, some
experts of the design team defines notations and tools,
which are added to the common knowledge base and
made available in the generated workshops.

This approach leads to a workshop hierarchy that tries
to bridge the communicational gap between software
engineers and experts of the application domain, since all
cooperate in developing computer systems customized to
the needs of the users communities without requiring them
to become skilled programmers.

The system workshop at the top of the hierarchy is the
one used by the software engineers. Each system
workshop is exploited to incrementally translate concepts
and tools expressed in computer-oriented languages into
tools expressed in notations that resemble the traditional
user notations, and therefore understandable and
manageable by users. More precisely, at each level of the
hierarchy but the bottom level, people use a system
workshop and might create a child workshop tailored to a
different type of d-expert.

The hierarchy organization depends on the working
organization of the user community to which the hierarchy
is dedicated: each hierarchy is therefore organized into a
number of levels. The top level (software engineering

34

level) and the bottom level (application level) are always
present in a hierarchy. The number of intermediate levels
is variable according to the different working organization
of the user community to which the hierarchy is dedicated
[I51 and to guarantee a gentle slope to complexity.

To make clear the concepts about the SSW hierarchy,
in Section 6 we refer to a prototype under study in the
system automation field, designed to support different
communities of workers and technicians.

5. A view on visual interaction

To develop a VIS organized as SSW hierarchy,
software engineers and d-experts have first to define the
pictorial and semantic aspects of the Interaction Visual
Languages (IVLs) through which users interact with
workshops. In our approach, we capitalize on the theory
of visual sentences developed by the Pictorial Computing
Laboratory (PCL) and on the model of WIMP interaction
it entails [16]. From this theory, we derive the formal
tools to obtain the definition of IVLs.

In the PCL model, the human and the system interact
by materializing and interpreting a sequence of messages
at successive points in time. The human interprets the
messages by applying hisiher cognitive criteria, while the
system applies programmed criteria. In principle, the
interaction process ends when the user decides that the
task has been achieved or has failed. In WIMP interaction,
the messages exchanged between the user and the system
are the entire images represented on the screen display,
formed by texts, pictures, icons, etc. and the user can
manifest hisiher intention operating on the input devices
of the system such as keyboards or mice. Users
understand the meaning of such messages because they
recognize some subsets of pixels on the screen as
functional or perceptual units, called characteristic
structures (css) [16]. The cs recognition results into the
association of a meaning with a structure on the screen.
For the system, a cs is a set of screen pixels to which a
computational construct is associated. The designer
specifies the association between a cs and a computational
construct U by two functions, intcs (interpretation) and
matcs (materialization), and defines a characteristic
pattern (cp) as the triple cp=<cs, U , <intcs, matts>>.

From the machine point of view, a characteristic
structure is the manifestation of a computational process
that is the result of the computer interpretation of a
portion of the program specifying the interactive system.
The computer interpretation creates and maintains active
an entity, that we call virtual enti@ (ve). A simple
example of ve is the "floppy disk" icon to save file in the
iconic toolbar of MS WordTM. This ve has different
materializations to indicate different states of the
computational process: for example, once it is clicked by

the user the disk shape is highlighted and the associated
computational process saves in a disk file the current
version of the document. Once the document is saved, the
disk shape goes back to its usual materialization (not
highlighted). However, ves extend the concept of widgets
(as the case of disk icon before) and virtual devices [17],
being more independent from the interface style and
including interface components possibly defined by users
at run time. The definition of virtual entities by users
distinguishes our approach from traditional ones, such as
Visual Basic scripted buttons in MS WordTM. In [6] the
creation of a vein a medical domain is discussed the user
(a radiologist) surrounds a set of pixels tracing a closed
curve defining a new cs, and associates an annotation to
the identified area. A type is assigned to the area as a
consequence of the annotation activity, and a computation
is therefore associated with the cs by the system, so
defining a new ve. An interactive system is thus an
environment constituted by virtual entities interacting one
another and with the user through the 110 devices.

A characteristic pattern specifies the state of a ve [IS].
The user sees the system as a whole ve, whose
computational component U of the state is materialized at
each instant as an image i on the screen. The designer
describes this association as a triple vs=<i, U , <int,
mat>>, where i is the array of pixels constituting the
current image, U is a suitable description of the current
state of the whole computational process, in? and mat are
two functions relating elements of i with components of U .

This triple is called visual sentence (vs), and it specifies
the state of the whole virtual entity.

The designer specifies the dynamics of the system by
specifying the initial visual sentence vso, the one that is
instantiated when the user first accesses to the system, and
a set of transformation rules that specify how a vs evolves
into a different one in reaction to user activities [18].

6. Building SSWs in a real case

In this Section, we provide an example of applying the
SSW methodology to a real case we have developed with
ETA Consulting, a company producing systems for
factory automation. ETA is also responsible of producing
the operating software (and related user interface) for the
systems that it sells.

6.1 Analysis

ETA Consulting has the following needs: 1) creating
systems for factory automation that are usable, i.e. easy to
learn and easy to use for its clients; 2) having software
tools which support ETA personnel (d-experts) in the
development, testing, and maintenance of such systems.

Level 4 - Level 3 - Level 2 -
basic system system workshops application workshops

system workshop for ve for interface
workshoo commxition

application workshop for
sofhvare tests

application workshop for
mechanical programming

application workshop for
tracing trajectories

application workshop for
updating archives

application workshop
devoted to the operator

- - - - - - - - - - - - - - - - - - - - - - - . - - - - - -~~

soffwarr E n p e c a sonware Olgrnim & ETA technnlclanr

Figure 1. The hierarchy of workshops designed for the ETA Consulting case.
As we will describe in the following, ETA personnel is
composed of different categories of people with different
skills, who need to perform various tasks with the
software tools. In accordance with our approach, specific
software environments (SSWs) must be developed for
each category of users. Similarly, ETA clients need
different environments specific for their tasks when
operating the automation systems. The analysis we have
performed with ETA d-experts and clients of ETA
automation systems has lead us to foresee a SSW
hierarchy structured in four levels (Figure I):

I) A system workshop for sofmare engineers. This is a
hasic workshop always at the top of the hierarchy since it
is the one used by the team of software engineers, in
which they find all tools, programming languages, etc.
they need for generating the SSWs for specific
applications. Using this workshop, the team defines the
libraries of methods for css creation, the window system
[19], the templates for linking css and elements of the
window system, and the IVL, which allows also the ETA
technicians (d-experts) to manage all this stuff at level 2.

2) A system workshop for virtual entity (ve)
generation. The software engineers have created this
workshop to he used together with ETA d-experts in a
kind of participatory design, for generating all ves
necessary to the ETA d-experts to develop the systems
they sell to their clients. A deep analysis of user
requirements has been performed. More specifically, we
have analysed the company and the people working in the
company, the kind of applications they develop, their
usual clients, the notations and tools they traditionally use
to develop their applications, in order to identify the
interaction visual languages for this SSW. The ves created
in this workshop represent the tools necessary to ETA d-

7
ETA Consulting
workshops

- - - - - - - -
Consulting
clients
workshops

- -

experts for their activities. We identified two main
activities of ETA d-experts: the first one related to the
software mechanical design and testing of the automation
system; the second one referring to the automation system
operating in the client factory (see Figure I) .
Consequently, once all ves are created, two child
workshops are generated the first used by ETA d-experts
for creating environments suitable for the first activity; the
other for creating the applications for the clients.

3) One or more system workrhops for interface
composition. Given the yes made available by the system
workshop at level 2, the ETA d-experts (technicians) use
the workshop at this level to generate the application
workshops for the other d-experts or for the end-users.
They compose various prototypes of the application
interface by selecting the ves prepared at level 2. In
accordance with a user-centred approach, such prototses
are evaluated together with the other d-experts and end-
users in order to choose the most appropriate for them.

4) One or more application workshops devoted to the
different professionals working at ETA, as testers (d-
experts), or in the client factory, as operators of the
developed application. More in detail, in ETA there are
mechanical designers and testers, software designers and
testers. Therefore, we identified for them three different
application workshops: the frst for mechanical testing, the
second for software testing, and the last for mechanical
programming of the automation systems. Besides, among
ETA clients, who use the automation systems produced by
ETA, we found other two kinds of users: assembly-line
operators and production managers. In this case other
three application workshops have been identified: one for
operators and the other two for managers.

The intermediate levels in the hierarchy are developed

36

cbmfon
template="yeS"
id="butfonIdentif ier'
poslfion="o. 0"
dimension="OxO"
shape="buf~onShape''
color="buf~onColar"
srroke-width="l"
anc1;"funcrionOnClick"
ono"er='fu"cfionOnMo"~~O"~~',
ono"r="f"ncrianOnMo"se0"~">
<text pasition="o,o"

< / t e x t >
< t e x t id="bufronIdenrifiern",

</ text>

fill="black" fonf-size="ZO">
B m t o n T e x t

Description button

Figure 2. IM2L definition of the ve of type '"button"

to cope with the need to gradually adapt the systems to the
complexity of the tasks (gentle slope to complexity).

6.2 Implementation

The implementation is based on the techniques and
tools made available within the W3C framework. The
interactive environment with which the user interacts is
implemented as an XML-based document and a library of
javascript functions running under a common web
browser, enriched by the Adobe SVG Viewer plugin.
SVG is the XML specification for vector graphics [20].
The XML-based document is written adopting IM2L
(Interaction Multimodal Markup Language) [ZI], which
has been defined to specify the structure of the possible
ves to be used in the application at hand. Lack of space
prevents us from showing the user interface of each SSW.
In order to illustrate the creation and specialization of ves
necessary to the ETA environments, we describe the
definition and creation of the ve 'button".

Level 1. Using the SSW at level 1, the software
engineer provides the IM'L definition of the type
"button", as shown in Figure 2. Then, the software
engineer defines a library C q o f possible button shapes as
a set of SVG prototypes. A javascript function must also
be defined by the software engineer to transform the IM2L
description of the button into an instance of the SVG
prototype. Figure 3 shows an example of a library of css
and the SVG prototype for a button having a rectangular
shape and a textual label. Moreover, the software engineer
creates a library U, of javascript functions defining the
computations to be associated to a button, including
standard computations typical of a WIMP system (for
example open a window when clicking on button), and
application-oriented computations, i.e. related to the
automation system operation in the ETA case study.
Finally, the IM'L definition, the SVG prototypes and the
javascript functions are made available to the next level in
the hierarchy (level 2).

Level 2. At this level, the ETA d-expert associates a
button shape (a characteristic structure) csi with a
computation U,, b defining the pair <in$, mat,> obtaining
the characteristic pattem cpi=<csi, ui, <in$, mat,>> that J . y

family="*:rial"> < / text,
id="''> </desc>

49,
Figure 3. The library CS, of button shapes and the
SVG prototype of the rectangular shape
specifies the initial state of the ve "button". This
association is done by specifying the attributes in the
IM2L description. Some parameters are set at this level
while other remain variable, to be set at the next level. As
shown in Figure 4, the d-expert sets the following
parameters: the button identifier, the shape of the button,
the names of the computations associated with the
activities performed with the mouse, and a link to a
textual description of the button functionalities. All the
other attributes assume default values which can be
modified at level 3. The created characteristic pattems
specifying buttons are then organized in a button library to
be made available to the workshop at level 3.

Level 3. At this level, the d-expert, while composing a
specific interface, instantiates the characteristic pattems
made available by level 2. The interface composition is
visually performed: for example, the values of the
attributes "position" and "dimension" are set
automatically as a consequence of the positioning activity
and the run-time adjustment of the button dimension.
Other parameters, e.g. button colour, can be set by the d-
expert through a parameter setting facility accessible by
clicking on the button. Figure 5 shows the final definition
of the button: the values, which are specified at this level
of the hierarchy, are in bold.

Level 4. At this level, the end-user uses the application
workshop generated by the system workshop at level 3 to
cany out hisher task. In the example case, s h e may
interact with the button "Automatico" to start the machine
in the automatic modality. In summary, the ve button

</butro">

Figure 4. cpi definition at level 2: the values in bold
are definitively assigned to the attributes

31

<button
tempIaLe="YeS"
id="b"rtOn_aUfOmaT1C01
posirion="O, 0 "
dimension-"lSOx80*
shape="rect" color="lightgrey,*
stroke-uidfh="l"

int, mat, m ~ l = " ~ o l l u ~ ~ m a t i ~ o , BVL"
ono"er='Descriprian,

< t e x t position=

DoAutomatico (...) fill.'grsa""

'automaticOD'"
OnO"f="ResfOre">

"tranelate(l0 5 0 1 "

f o n f - S i 2 = = " 1 8 " , A " ~ O m ~ ~ ~ ~ ~
. /CeXt>

Description (...)
Restore (...I <text id=l,bucron_auramaricoo',>

Machine automatic modality
is activated </ text>

</button>

Figure 5. cp, instantiation at level 3: attributes
highlighted in bold are definitively specified

"Automatico" is incrementally defined in shape, content,
and behavior throughout levels 1-3 to be used at level 4.

7. Conclusions

Most users require environments in which they can
make some ad hoc programming activity related to their
tasks and adapt the environments to their emerging new
needs. Moreover, user-system interaction is currently
difficult for several reasons, including the user diversity
and the co-evolution of systems and users. The
methodology discussed in this paper is a step toward the
development of powerful and flexible environments, with
the objective of easing the way users interact with
computer systems to perform their daily work.

8. Acknowledgements

We are grateful to Denise Salvi who developed the
prototype, and to Silvan0 Biazzi of ETA Consulting
(silvano.biazzi@cjb.it) for providing the case study.

The support of EUD-Net Thematic Network (IST-
2001-37470) is acknowledged.

9. References

[I]

[2]

Nielsen, J., Usability Engineering, Academic Press, San
Diego, 1993.
Arondi, S., Baroni, P., Fogli, D., Mussio, P., "Supporting
co-evolution of users and systems by the recognition of
Interaction Panems", Proc. AV1 2002, Trento, Italy, May
2002, ACM Press, pp. 177-189

[3] Bourguin, G., Derycke, A., Tarby, J.C., "Beyond the
Interface: Co-evolution inside Interactive Systems", Proc.
IHM-HCI2001.

[4] March, A. I . , Mehandjiev, N. D., "Tailoring as

Collaboration: The Mediating Role of Multiple
Representations and Application Units", Conipurer
Supported Cooperative Work, 9,2000, pp. 75-100.
Carrara, P., Fogli, D., Fresta, G., Mussio, P., "Making
Abstract Specifications Concrete to End-Users: the Visual
Workshop Hierarchy Strategy", Proc. HCC '02, Arlington
(VA), USA, September 2002, pp. 43-45.

[6] Costabile, M.F., Fogli, D., Fresta, G., Mussio, P.,
Piccinno, A., "Computer Environments for Improving
End-User Accessibility", Proc. of 7rh ERClM Workshop
"User Interfaces For AN", Pans, October 23-25, 2002, pp.
187- 198.
Boehm, B. W., Abts, C., Brown, A.W., Chulani, S., Clark,
B.K., Horowitz, E., Madachy, R., Reifer, D.J. and Steece,
B., Sofmare Cosr Esrimation wifh COCOMO 11, Prentice
Hall, Upper Saddle River, NI, 2000.

[XI Varela. F. J., "Principles of Biological Autonomy", GSR
Amsterdam, North Holland, 1979.

[9] I S 0 Standard I S 0 5456 Technical Drawing Projection
Methods.

[IO] Wulf, V., ""Let's see your Search-Tool!" - Collaborative
use of Tailored Artifacts in Groupware", Proe of GROUP
'99, Nov.14-17, 1999, ACM Presspp. 50-60.

[I l l Costabile, M.F., Fogli, D., Letondal, C., Mussio, P.,
Piccinno, A., "Domain-Expert Users and their Needs of
Software Development", Special Session on EUD, UAHCl
Conference, Crete, June 2003, in print.

[I21 Blackwell, A., "See What You Need: Toward a visual Per1
for end users", Proc. of Workshop on visua/ /onguages for
end-user and domain-specific programming, Seattle, WA,
USA, September IO, 2000,

[I31 Letondal, C., Progrommarion et inferadon, PbD thesis,
Universid de Paris XI, Orsay, 2001.

[I41 EUD-Net Thematic Network, http:llgiove.cnuce.cnr.itieud-
net.htm

[IS] Carrara, P., Fogli, D., Fresta, G., Mussio, P., "Toward
overcoming culture, skill and situation hurdles in human-
computer interaction", lnr. Journol Universa/ Access in rhe
hfornrarion Society, 1(4), 2002, pp. 288-304.

[I61 Bottoni P., Costabile M.F, Mussio P (1999) Specification
and Dialog Control of Visual Interaction. ACM TOPLAS
21(6), 1077-1136.

[I71 Preece, J., Humon-Compufer Inreracrion, Addison-
Wesley, 1994.

[I81 Fogli, D., Mussio, P., Celentano, A., Pittarello, F.,
"Toward a Model-Based Approach to the Specification of
Virtual Reality Environments", IEEE lnlernarional
Symposium on Multimedia Sofrware Engineering
(MSE'2002), Newport Beach (CA), USA, December 2002.

[I91 Myers, B. A., "User Interface Software Tools", ACM
Transactions on Compsler-Human hteracfion, Vol. 2,
No. 1, March 1995, pp. 64-103.

[20] W3C Scalable Vector Graphics (SVG), [Online] 2001
<http: /lwww.w3c.orgiGraphicsiSVG/>

[21] Salvi, D., Progerrazione di ambienri inregrori per la
produzione di ambienti inferatrivi, Thesis, Universiti di
Brescia, Italy, 2003.

[SI

[7]

38

http:llgiove.cnuce.cnr.itieud

