Lisa Doan

DLC

DODE

1. what did you find (articulate the answers in your own words)
1.1. interesting about the article?

The idea of a domain-oriented design environment critiquing designs was interesting because I’ve always considered computational critiques to be superficial fixes that don’t address the underlying design issues of a system. But HYDRA seems to be an effective tool for kitchen design, and I’m interested to see how it could be applied to other domains, particularly software.
I think the ability to switch perspectives is a very valuable part of HYDRA. Oftentimes in designing things, we get stuck in a particular mindset and forget or neglect other factors that will affect our project. Sometimes, there are so many competing concerns that we simply don’t have the time to account for all the possibilities. Being able to switch perspectives quickly and easily could lead to valuable insight that otherwise would not have been thought of. At the same time, I don’t think HYDRA should be the only source of critique. Peer critique has the added advantage of human intuition and experience that HYDRA does not currently have. I think the optimal solution would involve both human and computational critiques.
I liked the discussion about passive and active critique because it incorporates the idea that critique should be an ongoing process. A project should frequently be reevaluated and assessed to determine whether or not it is heading in the right direction. And critique is an essential part of that reevaluation process. I feel that critique is an overlooked phase of every project, and in most projects I’ve worked on, most of the critiquing is performed after the initial design and requirements are completed. However, as noted in class, requirements are constantly changing, and the initial critique may not hold much bearing over the project after a few changes.
HYDRA-KITCHEN almost seems like a software “wizard.” Currently, there are “Installation Wizards” that step users through a process and abstracts away a lot of the details that the users don’t need to know so that the average computer user can install complicated software packages on their computers. The HYDRA-KITCHEN makes designing a kitchen seem almost trivial so that average homeowners could customize and design their own kitchens. This is bit of an oversimplification since there are still many things to take into account when designing a kitchen, but it doesn’t seem like a giant leap to suggest that anyone could use the software to do what kitchen designers do for a career.
1.2. not interesting about the article?
Overall, I thought the subject matter was interesting. The article could have been more to the point and less repetitive. I would have been more interested if the HYDRA example was presented at the beginning and the concepts were then related to the example rather than the other way around.

1.3. does it relate to your own work (as a student, as a worker)?
We are taught early in our education that constructive criticism can help us accomplish our tasks in terms of speed and quality. However, the only design critiquing tool I currently have for software is the opinions of my peers. Pair programming can be effective because two minds are working together, and the collaboration between them can lead to the most efficient and effective result.
Software IDEs like Visual Studio and eclipse are able to remind me to close my parentheses and will complete some of my code snippets, but they won’t tell me which algorithms or data structures would work best in a particular situation. I would love it if software libraries and design patterns could be better integrated into IDEs so that they would give me suggestions about what code would best accomplish my goals.
2. what do you consider the main message of the article?
The main message of this article was that it is possible for software to help us design better and that critique is very important to designing a solution.

3. are themes discussed in the article which you would like to know more about?
I’d like to see how this could be applied to a non-spatial domain (the Voice Dialog Design Environment).

4. do you know of other papers, ideas, and systems which are closely related to
4.1. DODEs

No.
4.2. Critiquing
No.
5. what does the article say about
5.1. design
Design is a very complicated process, and DODEs have the potential of making the process easier, particularly when knowledge is spread out across many minds.

5.2. learning
DODEs could potentially help us learn and not just critique our work. For example, Gerhard told us about how he learned to correctly spell a word after Word continuously corrected him. It was kind of a happy accident that he learned, but it seems like DODEs could also be used to help people learn in the same manner. For example, if we always use a b-tree to store our data, a DODE might be able to show us that, in some situations, it would be more effective to use a binary-tree.
5.3. collaboration
This article emphasized the collaboration between a human designer and a computational environment. While a DODE does not have the benefits of human intuition, it does have the ability to bring together knowledge that was otherwise spread out across many different experts.

6. do you have any ideas how this research could / should be extended based on your own knowledge and experience?
I’d like to see software IDEs incorporate this research and make software development less daunting to those who aren’t trained in the field.
