Laoleng Xiong

CSCI 4830-1
Design, Learning, Collaboration

Assignment 13
1. What do you think of the principles described? 

I think that the principals mentioned describe the basic rules that govern the creation of any programming language and then beyond. There’s the mention of Polymorphism which is naturally a part of any modern day programming language along with a lengthy discussion on Objects and Classes and the semantics that control the objects. In addition to normal programming language material, there is also a lot of discussion on the actual user application and interfacing. The paper talks about User Interface design and Operating Systems which I believe to be all vital and important aspects when considering the design and implementation of a programming language.

One thing that did strike me as odd and which presented the major principals in a more abstract and therefore less coherent manner was the language used to describe these principals. The concept of a mind and body within a programming language communicating with Messages is a little hard to follow. I understand that the attempt is made to illustrate classes and the passing of objects between class functions, rather than function calls like much older programming languages. However, to a non-programmer, or simply because I am a programmer, it is much more difficult to follow so abstract a thought process. Perhaps because the paper was written in 1981, before concepts like Garbage Collection and Dynamic Memory were commonly used, it is understandable to see things like Storage Management where many of us today would think that meant basic disc drive storage, at least in my own personal interpretation.
2. Are there any that you think are: 

· Wrong? 
· Controversial? 

· Dead on? 

· "motherhood and apple pie”? 

· missing?

I wouldn’t necessarily say that any of the concepts or principles mentioned is wrong. Instead I would say that they were ahead of their time. Like the paper mentioned, the concepts are general and can be applied to any number of systems, which I believe to be true. Many of the concepts are widely used today, like Modularization of components and Polymorphism. I would say that although it is possible to master programming languages, it is not easily done and I don’t see many of the more widely used and often times powerful languages like C# and Java being “entirely comprehensible to a single individual” such as it is mentioned in the paper. I do agree however that good design always ends up paying for itself in the end. Overall I think that the paper really foresaw some of the changes and directions that languages were heading in back in the day. Although I still like to think that some of the wording like Motherhood and such were written in the spirit of the times, much to the jargon of free-spirited hipsters.
3. Which do you think are most/least important design criteria? 

I think that Good Design, Polymorphism and Modularization along with good Organization makes for good languages. On the other hand I don’t understand what a Reactive Principal encompasses and how a component goes about presenting itself in a meaningful way. Virtual Machines and Operating Systems can sometimes be an afterthought in my mind. Sure applications today are designed with specific operating systems in mind as each and everyone is different and equally complicated, however, how can a design be everlasting if future operating systems can not be seen yet? I’m sure back in the 80’s Macs were a viable operating system but by the mid 90’s that wouldn’t have been the same case only to have it completely reverse again today and be one of the most vital operating systems the world over. The only way I can see a viable solution, is to have a good design, one that is adaptable for future trends.
4. How do these principles relate to other design principles we have discussed in this class? 

I think the paper makes good mention of several key principals mentioned in class. The paper talks about Good Design, especially good Organization and Modularity, which are all good aspects of design principles. In a reference, with the stretch of the imagination, the paper works on the idea of scaffolding, or more clearly objects and components that can be used to build a much more sophisticated system.
5. Are you familiar with some other object-oriented language? How do they fare with respect to these design principles? Can you find comparisons between Squeak and this language? 

I’m familiar with Java which in my opinion strives to be completely object-oriented. There’s a complete restriction to classes and heavy emphasis on Modularization and Objects and strong support for Polymorphism. I think that many modern day programming languages that are object-oriented tend to have a lot of the same principles or similar principles. Where as most of the languages do focus on dynamically allocated memory, which I think the paper alludes to in discussing Storage Management, there are some aspects which differ. I’m not sure how to make a valid comparison between Squeak and Smalltalk, as I’ve only seen Squeak used and not discussed and I’ve only seen Smalltalk discussed, not used.
