Lisa Doan
Answer the following questions:

1. What do you think of the principles described? 
I think it’s easy to see that SmallTalk was way beyond it’s time. Most of the principles that are first presented in this paper are the basics and foundation we use in programming today (examples: polymorphism, factoring, and virtual machines are all terms we’re familiar with). It’s interesting to see that the concept of software being accessible to everyone goes back at least two decades, and yet, things aren’t that much improved – computer science is still a necessary niche role. 
Making a software tool with as few unchangeable parts as possible (make it as versatile as possible) is also presented in this article, and I think that is in line with everything we’ve been learning this semester. However, there are still issues to be addressed (how to make tools more versatile while still being general-use?) before such a tool can be built. 
2. Are there any that you think are: 

· Wrong? 
I don’t think there’s anything wrong about these principles.

· Controversial? 
Maybe in the 1980s, these topics would have been more unheard of than today and could have been more controversial. Many of the concepts in the article are things we assume or take for granted now (sans the no Operating System part), such as objects, messages, polymorphism, and factoring. 
· Dead on? 
This article and the ideas within it were laid out 20 years ago, and I’m very surprised at how accurate it has turned out. The ideas were so revolutionary back then, and now, they’ve been integrated into our languages (C++, Java, etc). 
· "motherhood and apple pie”? 

· missing? 

3. Which do you think are most/least important design criteria? 
I wouldn’t say that there are any unimportant ideas, but the concept that the operating system is a collection of things that don’t fit in a language and should be eliminated is completely unfeasible to me. To me, this idea implies a single, all-powerful language that can take care of not only each program, but all of the other running programs. I sometimes conceptualize each program as an object along with the OS, and it communicates to the hardware with the OS. No OS would imply the language would have to be able to let the software and hardware communicate, and that may take away from the languages simplicity and would no longer be “entirely comprehensible to a single individual (design principle 1).”
4. How do these principles relate to other design principles we have discussed in this class? 
As I mentioned earlier, this article discusses making software accessible to every individual. That is inter-related with our class discussions about designing software that domain experts can use. Rather than having the domain experts confer with the software experts, the domain experts would completely comprehend each piece of the software they are using and not require an engineer’s assistance. The software engineers would then become meta-designers and design the software for the domain experts.
5. Are you familiar with some other object-oriented language? How do they fare with respect to these design principles? Can you find comparisons between Squeak and this language? 
I am only just beginning to learn Squeak, so I cannot make any comparisons. However, I have used C++ and C#, and the languages do not completely cover all of the design principles. Of course, there are objects that can communicate with each other, and abstraction (polymorphism) are major concepts in object-oriented design. But, there is still an operating system beneath these languages, and I don’t foresee that changing in the near future.

The natural selection design principle is hopefully working. Most of the languages I’ve worked with are object-oriented, and there are always new languages being developed that can better harness different principles presented in this paper. Hopefully, in the future, there will be one language that can make use of all of the ideas of this paper. 
