Gerhard Fischer and Hal Eden: “Design, Learning, and Collaboration” — Spring Semester 2006

Assignment 13: “Design Principles Behind Smalltalk”
Keisuke Nishimoto
1. What do you think of the principles described? 
This was the first time for me to read about the philosophy behind Object-Oriented Programming (OOP) and I was impressed by that.  I learned OOP by programming on my own and have never taken a class on this topic.  My understanding of OOP was just a better way to organize programming elements such as functions and variables, and I have never imagined the relationship between OOP and the model of human mind.  
2. Are there any that you think are: 

· Wrong? 
I think “object” is just one way of representation in human mind and it is not as universal as it is in the world of Smalltalk.  Thus, “Uniform Metaphor” sounds too extreme as a principle to design a programming language.  For example, I doubt people think boolean values “True” and “False” as an object, and Smalltalk’s way of writing condition statements as sending message to boolean object looks more difficult to understand than typical “if” statements used in other programming languages.

· Controversial?
 “Natural Selection” is perhaps too optimistic view in the world of programming language.  I agree that Smalltalk is of sound design with simple and beautiful structures, but people do not choose a programming language just because it is of sound design; they choose one  because it is actually useful.  Considering the fact that C++ is still widely used even with its very complex and ugly structure, Smalltalk may need to improve its usefulness. 

· Dead on? 
“Reactive Principle” of User Interface seems one of the most fundamental principle of UI design.  This reminds me of affordance theory.  

· missing? 
Even though Smalltalk was designed to match with the mental model of people, there still exists a huge gap between what they want to create and how they need to create (i.e. programming).  Personally, I think mastering Smalltalk is still as difficult as C, and thus Smalltalk itself still falls short of supporting the creative spirit in everyone.  I understand Squeak is one attempt to fill that gap.

3. Which do you think are most/least important design criteria? 
I think “Storage Management“  is the most important design criteria.  If we need to take care of memory allocation/reclamation of objects by ourselves, it is not an object, just a variable or structure of variables.  As such, I do not see C++ as a true object-oriented language.

On the other hand, I am skeptical about “Uniform Metaphor” as described above.  It may be because I started programming in BASIC and C, but I would like to know which is easier to understand for non-programmers, “Uniform Metaphor” or “Object and Primitive” like Java.

4. How do these principles relate to other design principles we have discussed in this class? 
“Modularity” and “Classification” are closely related to the design of complex systems in that a complex system (or class/module) is composed of subsystems (subclass/submodule) without knowing the details inside them.  

“Objects” is definitely a good way to fill the gap between developers and domain experts.  In reality we cannot always achieve naive one-to-one relationship between a domain object and an implementation object, but the concept of object could be a boundary object for the communication of developers and domain experts.

5. Are you familiar with some other object-oriented language? How do they fare with respect to these design principles? Can you find comparisons between Squeak and this language? 
The table below shows how each language supports these principles (to the best of my knowledge).

	Principles
	Smalltalk
	Java
	C++

	Objects
	Everything is an object accessible by reference
	Objects and primitive types.  Only objects can be accessible via reference
	Objects and primitive types, both accessible by value or pointer, but not by reference in the sense of Smalltalk

	Storage Management
	Supported
	Supported
	Not supported

	Messages
	Supported
	Method can be a message.
	Function call, not really a message.

	Uniform Metaphor
	Supported
	Primitive types are not an object and thus not uniform. Class and Interface are different concept.
	Class, structure, primitive value, all the mess!

	Classification
	Supported
	Supported
	Supported, with multiple inheritance

	Polymorphism
	Automatically supported
	Automatically supported
	Supported by virtual function, need to specify explicitly

	Virtual Machine
	Running on VM
	Running on VM
	Usually compiled into native code











Fischer / Eden
1
DLC course, Spring 2006

