Nathan Campbell

 What do you think of the principles described?

I have to agree with many of the principles presented in this article such as the points made about the object orientation. However, some of the principles are extremely difficult to accomplish such as the principle of getting rid of an operating system. While this sounds like a novel idea it would require a complete shift in the way we think about computers, but this might be just the kind of thinking we need to make better computers for the future.
 Are there any that you think are:

· Wrong?

I would not classify any of these principles as wrong, just different then current programming principles.
· Controversial?
The statement about getting rid of the operating system is a very controversial idea because so much of the way we know and work with computers currently relies on the Software/OS/Hardware model. Some people will enviably fight against this but it might be the right step to making computers more usable.

· Dead on?

I feel the statement “Personal Mastery: If a system is to serve the creative spirit, it must be entirely comprehensible to a single individual.” is absolutely correct for if a language takes more then one person to understand then that persons creative spirit is hindered.
Some other principles I felt were correct in respect to programming languages included:
· they should be as flexible as possible
· they need a metaphor that holds true through the entire model
· modularity is key and objects should avoid coupling
· The reason for the language is to provide a framework for communication

· Automatic Storage Management

· object should work together using messages
· missing?

 Which do you think are most/least important design criteria?
The most important is that programming should not stifle ones creativity and should be simple enough to use in order to bring that persons ideas to life. The least important design criteria I felt was the need to get rid of the Operating System, although this might make programming easier it might make other things harder (such as making one common place to organize your system).
 How do these principles relate to other design principles we have discussed in this class?

These principles can help one create a better environment for learning and allowing people to quickly use computers to their advantage. The EDC is a great example of this (it uses Squeak)
 Are you familiar with some other object-oriented language? How do they fare with respect to these design principles? Can you find comparisons between Squeak and this language?
All the programming languages I have ever used have been OO. (C++, C#, Java). I felt that they allowed the programmer to decide how many of these principles were followed (such as the amount of coupling). However these languages are not necessarily easy for a person to learn on there own. I have no experience with Squeak.

