

Wisdom is not the product of schooling but the lifelong attempt to acquire it. - Albert Einstein

University of Colorado at Boulder

Overview of Collaboration

Gerhard Fischer and Hal Eden Spring Semester 2004

January 28, 2004

The Aided, Collective Human Mind — Exploiting the Social

Collaboration — With Whom?

- ourselves e.g., capturing our thoughts of the past \rightarrow reflexive CSCW
- all stakeholders e.g., clients, designers, customers, users → symmetry of ignorance, communities of interest (Col)
- colleagues e.g., supporting long-term, indirect collaboration
 collaborative work practices, design rationale
- tools e.g., knowing which tools exist, how they can be used, how they can be tailored to our specific needs → high-functionality applications
- *domains* e.g., domain abstractions (ontologies), standard examples
 → communities of practices (CoP), catalog examples, cases
- critics and agents e.g., shared knowledge of the task at hand, information volunteering → intrusiveness, information volunteering

Distributed Cognition

between:

- **spatially** (across space)
- **temporally** (across time)
- socially (human beings) → challenge: increase in socially shared cognition and practice — Wittgenstein: "If a lion could speak would we understand him?"
- **technologically** (humans and things/computational artifacts)

• advantage of humans:

- shared understanding
- background knowledge

• advantage of things (Ivan Illich,):

"a thing is available at the bidding of the user — or could be — whereas persons formally become a skill resource only when they consent to do so, and they can also restrict time, place, and methods as they choose."

 \rightarrow the "Nobel Prize Winner" fallacy

Classification of Collaborative Systems

- Distributed Computing / Distributed AI (DAI)
 - computers and computers
 - all information must be interpretable by computer
- Collaborative (Design) Environments (CPS)
 - computers and humans
 - mixture between interpretable and computer-mediated information structures

Computer-Supported Cooperative Work (CSCW) and Learning (CSCL)

- humans and humans
- computer-mediated
- most information is not interpretable by computers

Classification of Collaborative Systems

Two Major Approaches in Human-Computer Collaboration

L. Terveen "An Overview of Human-Computer Collaboration"

complementary approach

- based on the asymmetry between human and computer
- claim: the design of the collaboration is not only a problem of simulating human to human collaboration but of inventing engineering alternatives to interaction related properties
- emulation or replacement approach (for example: use of natural language, speech,)

collaborative human-computer systems require

- to specify a division of labor between human and computer (what part of the task should be exercised by human beings and/or by the computer?)
- to design a communication protocol that can be used to coordinate and mutually enhance the efforts of the participants

Example: Principles of Human-Centered Aircraft Automation

- **Premise:** The pilot bears the ultimate responsibility for the safety of any flight operation.
- Axiom: The pilot must be in command

• Corollaries:

- to command effectively, the pilot must be involved
- to be involved, the pilot must be informed
- the pilot must be able to monitor the automated systems
- automated systems must therefore be predictable
- the automated systems must also be able to monitor the pilot
- each element in the system must have knowledge of the other's intent

Dimensions of "Human-Centered Automation"

Supporting Indirect, Long-Term Collaborative Design

• why

- direct communication is impossible, impractical or undesirable
- communication is shared around artifacts and information space evolution
- designers need to be informed within the context of their work on real-world design problems

lessons learned

- people do not know what they do not know → information delivery techniques need to complement information access techniques
- information access: browsing is not good enough in large information spaces and queries cannot be articulated \rightarrow use the artifact itself as a query

more information:

G. Fischer, J. Grudin, A. Lemke, R. McCall, J. Ostwald, B. Reeves and F. Shipman: *"Supporting Indirect, Collaborative Design with Integrated Knowledge-Based Design Environments"*, Special Issue on Computer Supported Cooperative Work, in Human-Computer Interaction Journal, Vol. 7, No. 3, 1992, pp. 281-314

Different Dimensions of CSCW

Time			
Place	Same	Different Predictable	Different Unpredictable
₹ Same	meeting rooms	work shifts	team rooms
Different Predictable	tele- conferencing	email	collaborative writing
Different Unpredictable	broadcast computer indirect conferences collaboration		

Collaborative Work Practices

Nardi, B. A. (1993) *A Small Matter of Programming,* The MIT Press, Cambridge, MA

- from individual to groups (programming communities of cooperating users)
- continuum of (programming) skill from end users to "local developers / power users / gardeners " to programmers
 - end-users = little programming education; no interest in computers per se
 - local developers = domain experts with programming knowledge and interest
 - programmers = professionally educated
- example domains: high-functionality applications (word processors, spreadsheets, multi-media environments)
- prerequisite for the development of collaborative work practices and programming communities:
 - use of a common software system
 - modification components (macros, embedded language,)

WWW: From Broadcast to Collaboration Medium

Example of Shared Evolvable Information Repositories

- DynaSites at <u>http://Seed.cs.colorado.edu/dynasites.documentation.fcgi</u>
- Swiki (collaborative websites) → <u>http://swiki.cs.colorado.edu:3232/dlc/40</u>
- Expert Exchange: <u>http://www.experts-exchange.com/</u>
- Phoaks ("People Helping One Another Know Stuff"): http://www.phoaks.com/
- Open Source Eric Raymond → see: <u>http://www.tuxedo.org/~esr/writings/cathedral-bazaar/</u>
- Open Systems = "open source for the rest of us"

Open Systems

model: open source an intellectual paradigm requiring a new mindset

- an intellectual paradigm requiring a new mindset
- objective: leverage is gained by engaging the whole world as a talent pool
- from users/consumers \rightarrow co-designers/active contributors

some examples of decentralized, evolvable information repositories

- open source: collaborative development of software
- the scientific method/enterprise itself
- insight: "software/knowledge is not a commodity to be consumed but is a collaboratively designed and constructed artifact"

some characteristics:

- evolutionary design of complex systems → seeding, evolutionary growth, reseeding (SER) model
- success stories so far: with technically sophisticated developers (e.g., Unix Shell, Linux), not end-users
- social capital and gift cultures: social status is determined not by what you control but by what you give away

Self-Analysis of L3D as a Learning Organization

- homogenous versus heterogeneous computing environment
- collaborative work practices (power-user, local developers)
- jointly created and evolved information repositories:
 - Dynagloss
 - Endnote
 - Websites of Center, Research Project
 - Websites of Courses
- establish and share work practices and information:
 - information producers: "who do I tell?"
 - information consumers: "who do I ask?"

Reinterpreting Motivation at a Collaboration Level

- who is the beneficiary and who has to do the work?
- organizational memories: what will make employees want to share?
- people need to make explicit what they know and take the trouble to enter it into the system
- collaboration depends on a social and economic system which values altruism
 - capitalism is selfish
 - claim: "until the free distribution of knowledge is rewarded economically, there is little incentive for individuals and organizations to share information"

Questions about Collaboration

- how do we get people to share, and what should they share?
- what is the relation between collaborative learning and individual learning?
- what are success stories for collaboration?
- which kind of processes and artifacts are needed to support collaborative learning?
- learning organization (but: individuals learn) → how exactly does the organization learn?
 - collaborative work practices (complement each others knowledge)
 - external artifacts (products, processes, group memories)
- how much can we get a "free lunch" by capturing and repackaging information that already exists? (e.g., recommender systems (such as PHOAKS), extracting information from bookmarks, social network analysis.....)

References

- Grudin, J. (1994) "Computer-Supported Cooperative Work: History and Focus," IEEE Computer, 27(5), pp. 19-26.
 Available at: http://www.ics.uci.edu/~grudin/Papers/IEEE94/IEEEComplastsub.html.
- Illich, I. (1971) Deschooling Society, Harper and Row, New York. (specifically: Chapter 6: "Learning Webs")
- Moran, T. P. & Carroll, J. M. (Eds.) (1996) Design Rationale: Concepts, Techniques, and Use, Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.
- Nardi, B. A. (1993) A Small Matter of Programming, The MIT Press, Cambridge, MA.
- Resnick, L. B., Levine, J. M., & Teasley, S. D. (Eds.) (1991) Perspectives on Socially Shared Cognition, American Psychological Association, Washington, D.C.
- Terveen, L. G. (1995) "An Overview of Human-Computer Collaboration," Knowledge-Based Systems Journal, Special Issue on Human-Computer Collaboration, 8(2-3), pp. 67-81.
- Hollan, J., Hutchins, E., & Kirsch, D. (2001) "Distributed Cognition: Toward a New Foundation for Human-Computer Interaction Research." In J. M. Carroll (Ed.) *Human-Computer Interaction in the New Millennium,* ACM Press, New York, pp. 75-94.
- Dieberger, A., Dourish, P., Höök, K., Resnick, P., & Wexelblat, A. (2000) "Social Navigation: Techniques for Building More Usable Systems," *Interactions*, 7(6), pp. 36-45.
- Terveen, L. & Hill, W. (2001) "Beyond Recommender Systems: Helping People Help Each Other." In J. M.
 Carroll (Ed.) *Human-Computer Interaction in the New Millennium,* ACM Press, New York, NY, pp. 487-509.
- Raymond, E. S. & Young, B. (2001) The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, O'Reilly & Associates, Sebastopol, CA.