CodeBroker: An Active
Reuse Repository System

Yunwen Ye
Mar 15, 2004

Software reuse

O Definition
= Creating new software systems with existing artifacts

O Reusable artifacts

m Code artifacts

macros, functions, methods, classes, subsystems,
systems

= Non-code artifacts
analyses, designs, test plans and cases, domain models

= Knowledge

program idioms, program plans, design patterns, software
architecture styles, domain knowledge

O Reuse repository systems
m Supporting reuse activities

Why reuser

O Increased productivity
m Reduced development time
= Reduced cognitive load
® Reduced testing time

O Increased quality
= Fewer bugs

O Enhanced evolvability and maintainability

Reuse process (sLCMS)

contribution

: — .
Sharing Location
Reuse
Repository
ackagin el
P ging reformulatio explanation
Modification Comprehension

1"—-.,___|___‘_____ _________._,_._..r-"
extraction

Research problems

O No attempt to reuse (Location)

= Information islands
Not aware of the existence of reusable components

m Perceived low reuse utility (benefits/cost)
High cost of locating components
O Unable to locate the component (Location)
= Situation model vs. system model

O Unable to use the component
(Comprehension)

User’s knowledge about a reuse

repository

Belief

L4:
System Model

Reinventing the wheel

O

O 0O

Have you ever found that you have accidentally
Implemented a function that is in the library already?

Countless times! (tomo)

Yes this happens often while learning a new language.
(prabhu)

Yes, | have done this a number of times. (mandalia)

Yup, | wrote a parser in Java that would have been much
easier with a StringTokenizer. I'm sure I've done this other
times, but that one really gets me (minick).

Yes. When | was trying to convert a string of numbers into
integer, | wrote a function to do it. Later on | found out there is
function atio in C library to the exactly the same thing (jing).

Probably many times, but how would | know? (Jon Marbach).

Reinventing the wheel

O

Have you ever found that you have accidentally
iImplemented a function that is in the library already?

Not yet (jackson)

| cannot remember ever implementing a function that was already
In the library. (deriggi)

No, but I have never really checked this out (Serina Croll).

Reinventing the wheel

O “Conversations with developers revealed several cases in
which programmers, unaware of a virtual machine primitive
for an operation, repeatedly reimplemented the same
operation--in one case, ten times.” [Devanbu, 1991]

O Reusable objects demand proper advertisement [Walton,
1992]

O “We have discovered that ‘marketing’ the components in
the CSL is just as important as providing the correct
technologies for users in Schlumbeger Qilfield Services
products. [Rosenbaum 1995]

o It happens that we develop functions when they exist and
we do not realise it. [Coulange 1997]

O “l could be creating a method that does exactly the same
thing somebody else’s does ... even though we have access
to each other’s code. We might call them different names
and we might have a bit different way of doing it, but we’re
still doing the same thing.” [Fichman, Kemerer, 1997]

Proposed solution

O Active component repository systems
m Overcoming the limits of browsing and searching
m Supporting information delivery

O Benefits
m Reusing unknown components
m Reduced locating cost
m Seamless integration with programming environment

Challenges 1n active reuse repository
systems

L4
System Model

y

Belief A

Task-relevant
information

reprezented with a number from 0 to 51, The program shou.o p coocc
a list of 52 cards, as results from a human card dealer %/

public class CardDealer o
static int [] cards=rew int[52]:

static {

For (int i=0% i<G2+ i++) cards[i]=i: .
T }
‘%% Create a random number between two limits %/ Listener
public static int getRandomMumber (int from, int to) o

inferred queries

|H## Thiz claszs simulates the process of card dealmg,, Each i COdeBrOker

Editing space

-+ Cardlealer,java 10-0% 02:08 PH 0,97 (JDE)--L10--All
A% An example for getInt wreitten by yurwen "Fri Oct 5 14:00:58 2001"*/
import com,objectspace, jgl.util, ®:
*#¥ Foll a die and print the probability of each rnumber's ococurtence #/
public class DiceRoller {
final static int times=100003%

< Reposit@

public static woid main{String args[1) 1 . ag
int[] distribution=new int[E]:
el Fetcher
for (int i=03 i<times: i++) | Example
p = Randomizer,getIntil, B):
\ distribution[p-1]++: retrieved components

Syztem, out,println" (Number, Dccurrences, Probability)"d:
: _ javasexamples/liceRaller, java) (JOE)-——L10-—-Top--
0,83 getlnt Generate a random number uzing the default gpesrat
0,78 getlone Generate a random number wusing the default erat
0,73 mextInt Generates an - wern i

0,77 ne r Lenerates & Dellvery buffer iven 1
1:i% #RCI-displayx 10-05 02:08 PH 0,597 I'F'Hu-atul-:l_._
(M com, objectzpace, jgl.util,Randomizer: tint getInt{int lo, 1mt n1)

Inferring the task

O Plan recognition

m Actions -2 Inferred goal - Suggested actions or
Information

O Similarity analysis

— -~ ~ -
~

similar y

needs)

Similarity analysis in CodeBroke

Current situation

...,/Create a random number
= between two limits }

/% Thiz class zimulates the process of card dealing, Each card is
represented with a number from O to 51, The program should produce
a list of 52 cards, az results from & human card dealer #/
public class Cardlealer £
static int [] cards=rew int[52]:
static {
for (int i=0: i<G2: i++) cards[il=i:

int <- Int X int

T ans® *
S#% Create a random number between two limits # | mmmannt

public static int getRandomMumber (int from, int to) { F---tl's‘tener

-+%% Cardlealer,java 10-05 02:08 PH 0,97 (JDE)--L10--All
/% An exanple for getlnt weitten by yunwen "Fri Oct 5 14:00:58 2001"%/
import com,objectspace, jol,util, *:
/4% Roll a die and print the probability of each number's occurrence #/
public class DiceRoller §
final static int times=10000%
public static woid main(String args[]) {
int[] distribution=rew int[E]:
int |E: Vi g . A
for (int i=0; i<times: i++
p = Randomizer,getInt(l, B): Itu atl on
distribution[p=1]++:

} .----.-.-. EEEEEEEEEEEER -— 3 =
System, out., pring L Number"ﬂcdﬂ‘ﬁeﬁcee:wfr‘eha.lj-lllt 1B > Int < Int X Int

CE-E:x 1[|||:ll|-*f.- gz nolezdTliceRaller, iauw -1| IT[lEI——L
1 0,89 pgetlnt| Generate a random number uzing the default generalke = SNy
2 0,78 geftlong Generate a random AUmber Uzing Lhe default generat "...‘..___ Generate a. random number
3 0,78 nextInt Generates an int value between the given limits, aebLL o .
4 0,77 ne ¢ [enerates a long '..'alue between the given limits,
1:i% #RCI-dis k10 FH 0, i ReusableComponent Infoj——L T USIng the defaUIt generator

Elcem objectspace, jgl,util Randomizer: ,1nt getInt(lnt lo, int hi)

The rationale

O Three aspects of a program
m Concept
The functionality of the program
Semantic information
Revealed in comments, identifiers, ...
m Constraint
Execution environment
Syntactic information
Revealed in signatures, protocols, ...
m Code
The implementation

O The assumption
= Similar concept + compatible signature - reusable code

Basic information retrieval (IR)

techniques

O Information retrieval: Finding similar documents based on

the commonality of terms

m Documents and queries are represented by term vectors

Dy =(f, 5 f2 55 -0 T)

m Similarity is the distance between two vectors

Similarity (Q, D) = iQ[i]x D[i]/‘/znj Q[i]* x Z D[i]*

Term space: (factor information help human operation retrieval system)

Contents Vector Similarity

Q | human factors in information retrieval (1101011)
system

D1 | factor factor factor human human retrieval | (300201 1) 7/75°->=0.80
system

D2 | information operation retrieval retrieval (0100120 0.55

D3 | factor help help retrieval (1020010) 0.37

LSA: Improved IR

O Latent semantic analysis

m Addressing the vocabulary mismatch problem (people use
different names to refer to the same concept)

m Creating a semantic space with a large amount of documents

g - -

ucing the gular vectors

- [-

Probabilistic IR model

O Adding weights to each term

Dj:(tl,j,tz,j, =my tN’j)
t;; = TRW, * f,,

O Term Relevance Weight
TRW; = log (p; X (1-9;) / g; X (1-p;))

pi Probability of the term appearing in relevant documents

qi Probability of the term appearing in irrelevant documents

Weighting schema 1in CodeBroker

T —n K, + Dtf. . .
sim(Q,D,) = " (log N —n. +0.5, (k, +Dtf; ; (k, +1)qtf,
S n+05 ° K+tf, k;+qtf,

N is the number of components
n; is the number of components whose documents contain the term ti

T is the number of terms in the component collection
tf; ; is the frequency of term ti in the document of the component Dj

qtf; is the frequency of term ti in the query Q
K =k, (L—b)+b-dl, /avdl

k,,k3,b are empirically determined parameters depending on the
nature of the document collection. In CodeBroker, Kk, is set
to 1.2, ky to 1.0, and b to 0.75.

dl; is the length of document D
avdl is the average length of all documents in the collection

Signature matching c

etermines the

constraint compatibil

ity

O Reusable components m
sighature

ust be compatible In

m Signature is the syntactic interface of a module (method

and class)

= Improving the precision of retrieval

O Method level match

m Exact match
Typel x Type2 -> Type3
TypeA x TypeB -> TypeC

<=> Typel=TypeA AND Type2=TypeB AND Type3=TypeC

m Relaxed match

Generalization / Specialization / Reorder

string x int -> int matches

(relaxed) long x string -> long

Signature matching for classes

public class AutomaticReception extends Vector { VOid -> bOOlean

public boolean initialize(); void -> void
public void delete(); . .
public insert(string person); Strlng -> void
gublic int length(); VOid > mt

. publTc class Queue extends Vector VOid -> bOOlean
_ void -> void
public boolean empty(); . .
public dequeue(); Ob|eCt -> void
public enqueue(Object item); - -
oublic int sizeQ): void -> int
}

7

Presenter: tailoring the delivery to

larger context and user

u = eliiis] ' L4: Component
i Uistaner ~~_Repository

om umber hetue
public static int getRandomMumber (int from, int to) {

imy com. ctspa al.util,®:
4 a an the probability of each number's occurrerce
ublic
in
ublic static void main($tring—cgs)
1in istributior {
int p:
or (in
isf
ster robability)”):
LE-Exampl exil er.javal (JIE)--L10-
R e E -
.)
% e y =
1130 ALI-di (Reus Info)
[Wcon, 2 n

User model: list of Discourse model: list of
components known to components from uninterested
the user domains

O ¢®

§P resenter

Discourse models: Improving task-
relevance

O Discourse models capture the larger
context of programming activities

m Representing the interaction history
petween programmers and CodeBroker

® Removing irrelevant components

= Negative discourse models: specifying
what Is not of interest to programmers

m Example:
((“java.util._zip”) ;; a package
(“java.awt” (“CardLayout™))) ;; a class

User models: User-specific delivery

O User models represent programmers’
knowledge on the component repository

®= A list of kKnown components

m Example:
((““jJava.applet” (“Applet” (“getParameteriInfo™))

(“jJava.i10” (“File” (“exists”
“11/02/00” “11/10/00”
“11/11/007)

(““1sAbsolute”

“11/01/00” “11/10/00
“11/11/70077))))

= Components contained in user models are not
delivered

Incremental discourse modeling
and user modeling

O Initial user models
m Created by analyzing existing user programs

O Adaptive user models
m CodeBroker updates user models automatically when
It detects the use of a component in the editor
O Adaptable user models and discourse models

m Using the Skip Components Menu associated with
each delivered component

Skip Components Menu

CardLayout

void nexttjava,awt,Container parent) P
M This Burfer

Jawa, awt

Ouery Refinement

»
b

This Seszion
All Sessions

Added to discourse model

Orly
Only

i Added to user models

Models in CodeBroker

Session 1 Session 2

Existing
programs

Retrieval-by-reformulation

O A process for software developers to
Incrementally develop reuse queries

O Delivered components help developers become

familiar with the vocabulary and structure of the
repository

= Change the way of writing the query

= Limit the search scope by specifying (un)interested
P!Iackages and classes

-1#% Cardlealerl, java ¢ JOE}-—-L3--Bot - ——

| Current Concept Ouery: Shuffle the cards to an arbitrary order
Current Constraint Ouery:

Filtered Componentz: java,auwt
Interested Components: com,objectspace, jal.algorithms,Shuffling

1+%% *CB-luery-Fef inement®

I_I.‘I " ™ 0od el ')

{Furdamental »—-L4--A11---——-——-------"o——

The cycle of

delivery-browsing-searching

O Delivered components are results of
Information reconnaissance

O Possible actions after the delivery

® The needed component is delivered
- Choose the needed one through browsing

= Too many components are delivered
- Filter the delivered components

m The needed one Is not delivered

- Search again through retrieval-by-
reformulation

Supporting comprehension and use

L]

—-ok% Cardlealer, java 10-06 02:08 PH 0,97 (JOE)--L10--Al1

"Fri Oct 5 14:00:58 Z2001"%/

/% An example for getlnt written b
impart com,objectspace, jol,util, ®:
J¥% Boll a die and print the probabilit
public class DiceRoller {
final static int times=10000%
public static woid main(String args[103
int[] distribution=new int[E]:
int p?
for (int i=0: i<times: i++) {

p = Randomizer,getInt(1l, 6):
distribution[p-1]++: Exam ple

of each number's occurrence %/

rogram

Illustrator

 S—

Syztem, out, println " (Number . Occurrences, Probability)"de

0,83 getlnt Generate a random number using the default gererat
0,73 petlong Generate a random number =zina the defanlt oenerat
0,78 mextInt Generates an int walue

077 e r Generates a long wall

a|dwexa ue youess

T " PR I | "

rogram

J Address File: [/ fusr fiavalials, 1. 0fdoc) apifcom. objectspace. jgl. ukil, R.ando

@ geilnt
public static int gecIntiint la,
int hi}
Generate a random munber using the default generator,

See Also;
nextlnt

Java documentation
@ zeiLong

Evaluating retrieval effectiveness

O Recall =
No. of relevant doc. retrieved

No. of relevant doc.

O Precision =
No. of relevant doc. retrieved

No. of doc. retrieved

O Results of 19 queries
m One-third is relevant

Prob. LSA
Recall - .
Precision Precision
0 45.82 35.77
10 45.82 31.86
20 45.82 30.89
30 41.20 25.62
40 41.01 20.62
50 40.74 20.44
60 37.46 13.86
70 37.46 13.82
80 32.71 13.82
90 32.19 12.32
100 29.43 12.32

Evaluation experiments

O Experiment goals:

m Observe the effectiveness of CodeBroker in
encouraging programmers to reuse

m Analyze the effectiveness of task inference, discourse
models, and user models

O 12 experiments with 5 subjects
® Implementing an assigned task with CodeBroker

Subjects S1 S2 S3 |S4 S5

Years of prog. in general 3-4 |5-6 8 10+ | 10+

Java skill (self-evaluation) 4 7 7-8 |10 7

System assessment

breakdown of deliveries

Sub | No |total |delivered | ynanticipated | 2ticipated —|vaguely | triggered
(LaLz) [outunknown-known
1 10 4 2 2 0 0
S1
2 3 1 1 0 0 1
3 7 1 1 0 0 0
S2 4 4 1 1 0 0 0
5 5 3 0 2 1 1
6 5 2 1 1 0 1
S3 7 4 3 1 2 0 1
8 3 0 0 0 0 0
9 4 3 0 3 0 0
S4
10 3 1 1 0 0 2
11 4 1 1 0 0 2
S5
12 5 0 0 0 0 0
Sum 57 20 9 10 1 8

Role of discourse models

Subject Task Retrieved# Added to DM# Removed by DM#
T1 168 1 pkg., 1 class 45
>1 T2 28 1 pkg., 1 class 10
S2 T3 140 4 methods 0
T3 80 1 pkg. 7
>4 T5 140 2 pkgs. 68
Other 7 experiments 872 0 0

O Discourse models removed irrelevant
components

O Larger tasks may make programmers add
more components to discourse models

Role of user mode

Retrieved Removed | User System
added added

168 15 0 0

28 0 0 0

140 S 0 0

52 0 0 0

160 14 2 5

60 0 0 6

20 1 0 0

60 0 0 0

80 0 0 0

140 0 0 0

100 1 0 9

420 0 0 0

User models removed few
components

m Incomplete user models

m Most of the delivered
components were unknown

Removed components not
reusable

User models too simple
m Unforgiving
m No decaying mechanism

Problems found

O Irrelevant components
- More sophisticated task modeling techniques

O Abstraction mismatch from queries to
components

- Indexing based on usage

O Lack of guidance in refining queries
- Guidance on the choice of terms

O Lack of configurability
- More user-friendly interface

O Lack of examples
- The development of the lllustrator agent

Future research

O Long-term user models and their evaluation in
natural settings

O Distributed CodeBroker supporting software
development communities

m Make programmers aware of reusable components

m Bring together programmers working on similar
programs

| delivering

189)/01g9p0D
/
¥

General lesson: Designing information
repOSItory systems

O Two modes of designing and using
Information repository

= Filtering the input vs. Filtering the output

I
I /\ B
o I v
— /\ -_— (— -
© information c [I t+ —5
=In i = ' =) information [
= repository |l | < : o —
-
R , = repository |«
= 5 < ' = =
i = | = DR
u I
I L |

I
key

%designerj%active user %passive user

Summary

O Better understanding of cognitive difficulties
of component reuse
= Unknown components
= Low reuse utility

O A new type of component repository systems
= Active component repository systems

O Contributions to the design of information
repository systems in general
= Similarity analysis-based task modeling
m Focusing output filter instead of input filter

	CodeBroker: An Active Reuse Repository System
	Software reuse
	Why reuse?
	Reuse process (sLCMS)
	Research problems
	User’s knowledge about a reuse repository
	Reinventing the wheel
	Reinventing the wheel
	Reinventing the wheel
	Proposed solution
	Challenges in active reuse repository systems
	CodeBroker
	Inferring the task
	Similarity analysis in CodeBroker
	The rationale
	Basic information retrieval (IR) techniques
	LSA: Improved IR
	Probabilistic IR model
	Weighting schema in CodeBroker
	Signature matching determines the constraint compatibility
	Signature matching for classes
	Presenter: tailoring the delivery to larger context and user
	Discourse models: Improving task-relevance
	User models: User-specific delivery
	Incremental discourse modeling and user modeling
	Models in CodeBroker
	Retrieval-by-reformulation
	The cycle ofdelivery-browsing-searching
	Supporting comprehension and use
	Evaluating retrieval effectiveness
	Evaluation experiments
	System assessment
	Role of discourse models
	Role of user models
	Problems found
	Future research
	General lesson: Designing information repository systems
	Summary

