
CodeBroker: An Active 
Reuse Repository System

Yunwen Ye
Mar 15, 2004



Software reuse
Definition

Creating new software systems with existing artifacts

Reusable artifacts
Code artifacts

macros, functions, methods, classes, subsystems, 
systems

Non-code artifacts
analyses, designs, test plans and cases, domain models

Knowledge
program idioms, program plans, design patterns, software 
architecture styles, domain knowledge

Reuse repository systems
Supporting reuse activities



Why reuse?
Increased productivity

Reduced development time
Reduced cognitive load
Reduced testing time

Increased quality
Fewer bugs

Enhanced evolvability and maintainability



Reuse process (sLCMS)



Research problems
No attempt to reuse (Location)

Information islands
Not aware of the existence of reusable components

Perceived low reuse utility (benefits/cost)
High cost of locating components

Unable to locate the component (Location)
Situation model vs. system model

Unable to use the component 
(Comprehension)



User’s knowledge about a reuse 
repository

L3:
Belief

L4:
System Model

L2: Vaguely
Known

L1: Well
Known



Reinventing the wheel
Have you ever found that you have accidentally 
implemented a function that is in the library already?
Countless times! (tomo)
Yes this happens often while learning a new language. 
(prabhu)
Yes, I have done this a number of times. (mandalia)
Yup, I wrote a parser in Java that would have been much 
easier with a StringTokenizer. I'm sure I've done this other 
times, but that one really gets me (minick). 
Yes. When I was trying to convert a string of numbers into 
integer, I wrote a function to do it. Later on I found out there is 
function atio in C library to the exactly the same thing (jing). 
Probably many times, but how would I know? (Jon Marbach). 



Reinventing the wheel
Have you ever found that you have accidentally 
implemented a function that is in the library already?
Not yet (jackson)
I cannot remember ever implementing a function that was already 
in the library. (deriggi)
No, but I have never really checked this out (Serina Croll). 



Reinventing the wheel
“Conversations with developers revealed several cases in 
which programmers, unaware of a virtual machine primitive 
for an operation, repeatedly reimplemented the same 
operation--in one case, ten times.” [Devanbu, 1991]
Reusable objects demand proper advertisement [Walton, 
1992]
“We have discovered that ‘marketing’ the components in 
the CSL is just as important as providing the correct 
technologies for users in Schlumbeger Oilfield Services 
products. [Rosenbaum 1995]
It happens that we develop functions when they exist and 
we do not realise it. [Coulange 1997]
“I could be creating a method that does exactly the same 
thing somebody else’s does ... even though we have access 
to each other’s code. We might call them different names 
and we might have a bit different way of doing it, but we’re 
still doing the same thing.” [Fichman, Kemerer, 1997]



Proposed solution
Active component repository systems

Overcoming the limits of browsing and searching
Supporting information delivery

Benefits
Reusing unknown components
Reduced locating cost
Seamless integration with programming environment



Challenges in active reuse repository 
systems

L3:
Belief

L4:
System Model

L2: Vaguely
Known

Task-relevant 
information

L1: Well
Known



CodeBroker

Editing space

Example

Delivery buffer

Illustrator

ListenerListener

Presenter

Fetcher R
e
p

o
si

to
ry

inferred queries

retrieved components



Inferring the task
Plan recognition

Actions Inferred goal Suggested actions or 
information

Similarity analysis  

Current situationCurrent situation

needs
similar

Information XSituation ASituation A

probably  needs



Similarity analysis in CodeBroker
Create a random number 

between two limits

int <- int x int

Generate a random number 
using the default generator

int <- int x int

Signature 
Matching

Information 
Retrieval

Current situation

Situation A

Fetcher

Listener



The rationale
Three aspects of a program

Concept
The functionality of the program
Semantic information
Revealed in comments, identifiers, …

Constraint
Execution environment
Syntactic information
Revealed in signatures, protocols, …

Code
The implementation

The assumption
Similar concept + compatible signature reusable code



Basic information retrieval (IR) 
techniques

Information retrieval: Finding similar documents based on 
the commonality of terms

Documents and queries are represented by term vectors
Dj = (f1, j, f2, j, ..., fN, j) 

Similarity is the distance between two vectors

Similarity (Q, D) = Q[i]× D[i]
i =1

n

∑ Q[i]2

i=1

n

∑ × D[i]2

i =1

n

∑

Contents Vector Similarity

Q human factors in information retrieval 
system

(1 1 0 1 0 1 1)

D1 factor factor factor human human retrieval 
system

(3 0 0 2 0 1 1) 7/750.5=0.80

D2 information operation retrieval retrieval (0 1 0 0 1 2 0) 0.55

D3 factor help help retrieval (1 0 2 0 0 1 0) 0.37

Term space: (factor information help human operation retrieval system)



LSA: Improved IR
Latent semantic analysis

Addressing the vocabulary mismatch problem (people use 
different names to refer to the same concept)
Creating a semantic space with a large amount of documents

Reducing the singular vectors



Probabilistic IR model
Adding weights to each term 
Dj = (t1, j , t2, j, ..., tN, j) 
ti,j = TRWi * fi,j

Term Relevance Weight
TRWi = log (pi x (1-qi) / qi x (1-pi))
pi   Probability of the term appearing in relevant documents

qi Probability of the term appearing in irrelevant documents



Weighting schema in CodeBroker

N is the number of components
ni is the number of components whose documents contain the term ti
T is the number of terms in the component collection
tfi,j is the frequency of term ti in the document of the component Dj
qtfi is the frequency of term ti in the query Q

∑
= +

+
+
+

+
+−

=
T

i i

i

ji

ji

i

i
j qtfk

qtfk
tfK
tfk

n
nNDQsim

1 3

3

,

,1 )1()1(
)

5.0
5.0(log),(

avdldlbbkK j⋅+−= )1((1

k1,k3,b are empirically determined parameters depending on the 
nature of the document collection. In CodeBroker, k1 is set 
to 1.2, k3 to 1.0, and b to 0.75.

dlj is the length of document Dj
avdl is the average length of all documents in the collection 



Signature matching determines the 
constraint compatibility

Reusable components must be compatible in 
signature

Signature is the syntactic interface of a module (method 
and class)
Improving the precision of retrieval

Method level match
Exact match
Type1 x Type2 -> Type3
TypeA x TypeB -> TypeC

<=> Type1=TypeA AND Type2=TypeB AND Type3=TypeC

Relaxed match
Generalization / Specialization / Reorder

string x int -> int matches (relaxed)  long x string -> long



Signature matching for classes
public class AutomaticReception extends Vector {

public boolean initialize();
public void delete();
public insert(string person);
public int length();
}

void -> boolean
void -> void
string -> void
void -> int

void -> boolean
void -> void
object -> void
void -> int

public class Queue extends Vector 
{

public boolean empty();
public dequeue();
public enqueue(Object item);
public int size();
}



Presenter: tailoring the delivery to 
larger context and user

L3L2L1

L4: Component
RepositoryListener

Fetcher

inferred queries

Discourse model: list of 
components from uninterested
domains 

User model: list of 
components known to
the user

Presenter



Discourse models: Improving task-
relevance

Discourse models capture the larger 
context of programming activities

Representing the interaction history 
between programmers and CodeBroker
Removing irrelevant components
Negative discourse models: specifying 
what is not of interest to programmers
Example:
((“java.util.zip”) ;; a package  
(“java.awt” (“CardLayout”))) ;; a class



User models: User-specific delivery
User models represent programmers’ 
knowledge on the component repository

A list of known components
Example:

((“java.applet” (“Applet” (“getParameterInfo”))       
(“java.io” (“File” (“exists” 

“11/02/00” “11/10/00” 
“11/11/00”)

(“isAbsolute” 
“11/01/00” “11/10/00” 
“11/11/00”))))

Components contained in user models are not
delivered



Incremental discourse modeling 
and user modeling

Added to discourse model

Added to user models

Initial user models 
Created by analyzing existing user programs

Adaptive user models
CodeBroker updates user models automatically when 
it detects the use of a component in the editor

Adaptable user models and discourse models
Using the Skip Components Menu associated with 
each delivered component



Models in CodeBroker

UM

Existing 
programs
Existing 
programs

Component Repository

TM

DM

TMTM

DM

UM UM

DM

UM

Session 1 Session 2
Task 2Task 1 Task 1



Retrieval-by-reformulation
A process for software developers to 
incrementally develop reuse queries
Delivered components help developers become 
familiar with the vocabulary and structure of the 
repository

Change the way of writing the query
Limit the search scope by specifying (un)interested
packages and classes



The cycle of
delivery-browsing-searching

Delivered components are results of 
information reconnaissance
Possible actions after the delivery

The needed component is delivered 
Choose the needed one through browsing

Too many components are delivered 
Filter the delivered components

The needed one is not delivered 
Search again through retrieval-by-

reformulation



Supporting comprehension and use

Example

Delivery buffer

Illustrator

Java documentation

Programs

Programs

Programs

Mouse click 

S
earch

 an
 exam

p
le

Get further help
from the author



Evaluating retrieval effectiveness
Recall =
No. of relevant doc. retrieved
No. of relevant doc.

Precision =
No. of relevant doc. retrieved
No. of doc. retrieved

Results of 19 queries
One-third is relevant

 

Recall Prob.  
Precision 

LSA 
Precision 

0 45.82 35.77 
10 45.82 31.86 
20 45.82 30.89 
30 41.20 25.62 
40 41.01 20.62 
50 40.74 20.44 
60 37.46 13.86 
70 37.46 13.82 
80 32.71 13.82 
90 32.19 12.32 

100 29.43 12.32 



Evaluation experiments
Experiment goals:

Observe the effectiveness of CodeBroker in 
encouraging programmers to reuse
Analyze the effectiveness of task inference, discourse 
models, and user models

12 experiments with 5 subjects
Implementing an assigned task with CodeBroker

Subjects S1 S2 S3 S4 S5

Years of prog. in general 3-4 5-6 8 10+ 10+
4Java skill (self-evaluation) 7 7-8 10 7



System assessment
breakdown of deliveries 

Sub No total delivered unanticipated
(L4-L3)

anticipated 
but unknown 

(L3)

vaguely
known 

(L2)
1 10 4 2 2 0 0
2 3 1 1 0 0 1
3 7 1 1 0 0 0
4 4 1 1 0 0 0
5 5 3 0 2 1 1
6 5 2 1 1 0 1
7 4 3 1 2 0 1
8 3 0 0 0 0 0
9 4 3 0 3 0 0
10 3 1 1 0 0 2
11 4 1 1 0 0 2
12 5 0 0 0 0 0

Sum 57 20 9 10 1 8

S5

S4

S3

S2

S1

triggered



Role of discourse models

Discourse models removed irrelevant 
components
Larger tasks may make programmers add 
more components to discourse models

Subject Task Retrieved# Added to DM# Removed by DM#

T1 168 1 pkg., 1 class 45

T2 28 1 pkg., 1 class 10

S2 T3 140 4 methods 0

T3 80 1 pkg. 7

T5 140 2 pkgs. 68

Other 7 experiments 872 0 0

S4

S1



Role of user models
User models removed few 
components

Incomplete user models
Most of the delivered 
components were unknown

Removed components not 
reusable
User models too simple

Unforgiving
No decaying mechanism

Retrieved Removed User 
added

System 
added

168 15 0 0

28 0 0 0

140 5 0 0

52 0 0 0

160 14 2 5

60 0 0 6

20 1 0 0

60 0 0 0

80 0 0 0

140 0 0 0

100 1 0 9

420 0 0 0



Problems found
Irrelevant components

More sophisticated task modeling techniques

Abstraction mismatch from queries to 
components

Indexing based on usage

Lack of guidance in refining queries
Guidance on the choice of terms

Lack of configurability
More user-friendly interface

Lack of examples
The development of the Illustrator agent



Future research
Long-term user models and their evaluation in 
natural settings  
Distributed CodeBroker supporting software 
development communities

Make programmers aware of reusable components
Bring together programmers working on similar 
programs

delivering

indexing

C
odeB

roker



General lesson: Designing information 
repository systems

Two modes of designing and using 
information repository

Filtering the input vs. Filtering the output

designer active user passive user
key

information
repository

in
p
u
t filter

o
u
tp

u
t filter

information
repository

in
p
u
t filter

o
u
tp

u
t filter



Summary
Better understanding of cognitive difficulties 
of component reuse

Unknown components 
Low reuse utility

A new type of component repository systems
Active component repository systems

Contributions to the design of information 
repository systems in general

Similarity analysis-based task modeling
Focusing output filter instead of input filter


	CodeBroker: An Active Reuse Repository System
	Software reuse
	Why reuse?
	Reuse process (sLCMS)
	Research problems
	User’s knowledge about a reuse repository
	Reinventing the wheel
	Reinventing the wheel
	Reinventing the wheel
	Proposed solution
	Challenges in active reuse repository systems
	CodeBroker
	Inferring the task
	Similarity analysis in CodeBroker
	The rationale
	Basic information retrieval (IR) techniques
	LSA: Improved IR
	Probabilistic IR model
	Weighting schema in CodeBroker
	Signature matching determines the constraint compatibility
	Signature matching for classes
	Presenter: tailoring the delivery to larger context and user
	Discourse models: Improving task-relevance
	User models: User-specific delivery
	Incremental discourse modeling and user modeling
	Models in CodeBroker
	Retrieval-by-reformulation
	The cycle ofdelivery-browsing-searching
	Supporting comprehension and use
	Evaluating retrieval effectiveness
	Evaluation experiments
	System assessment
	Role of discourse models
	Role of user models
	Problems found
	Future research
	General lesson: Designing information repository systems
	Summary

