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Software reuse

O Definition
= Creating new software systems with existing artifacts

O Reusable artifacts

m Code artifacts

macros, functions, methods, classes, subsystems,
systems

= Non-code artifacts
analyses, designs, test plans and cases, domain models

= Knowledge

program idioms, program plans, design patterns, software
architecture styles, domain knowledge

O Reuse repository systems
m Supporting reuse activities




Why reuser

O Increased productivity
m Reduced development time
= Reduced cognitive load
® Reduced testing time

O Increased quality
= Fewer bugs

O Enhanced evolvability and maintainability




Reuse process (sLCMS)
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Research problems

O No attempt to reuse (Location)

= Information islands
Not aware of the existence of reusable components

m Perceived low reuse utility (benefits/cost)
High cost of locating components
O Unable to locate the component (Location)
= Situation model vs. system model

O Unable to use the component
(Comprehension)




User’s knowledge about a reuse

repository
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Reinventing the wheel

O

O 0O

Have you ever found that you have accidentally
Implemented a function that is in the library already?

Countless times! (tomo)

Yes this happens often while learning a new language.
(prabhu)

Yes, | have done this a number of times. (mandalia)

Yup, | wrote a parser in Java that would have been much
easier with a StringTokenizer. I'm sure I've done this other
times, but that one really gets me (minick).

Yes. When | was trying to convert a string of numbers into
integer, | wrote a function to do it. Later on | found out there is
function atio in C library to the exactly the same thing (jing).

Probably many times, but how would | know? (Jon Marbach).



Reinventing the wheel

O

Have you ever found that you have accidentally
iImplemented a function that is in the library already?

Not yet (jackson)

| cannot remember ever implementing a function that was already
In the library. (deriggi)

No, but I have never really checked this out (Serina Croll).



Reinventing the wheel

O “Conversations with developers revealed several cases in
which programmers, unaware of a virtual machine primitive
for an operation, repeatedly reimplemented the same
operation--in one case, ten times.” [Devanbu, 1991]

O Reusable objects demand proper advertisement [Walton,
1992]

O “We have discovered that ‘marketing’ the components in
the CSL is just as important as providing the correct
technologies for users in Schlumbeger Qilfield Services
products. [Rosenbaum 1995]

o It happens that we develop functions when they exist and
we do not realise it. [Coulange 1997]

O “l could be creating a method that does exactly the same
thing somebody else’s does ... even though we have access
to each other’s code. We might call them different names
and we might have a bit different way of doing it, but we’re
still doing the same thing.” [Fichman, Kemerer, 1997]




Proposed solution

O Active component repository systems
m Overcoming the limits of browsing and searching
m Supporting information delivery

O Benefits
m Reusing unknown components
m Reduced locating cost
m Seamless integration with programming environment




Challenges 1n active reuse repository
systems
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reprezented with a number from 0 to 51, The program shou.o p coocc
a list of 52 cards, as results from a human card dealer %/

public class CardDealer o
static int [] cards=rew int[52]:

static {

For (int i=0% i<G2+ i++) cards[i]=i: .
T }
‘%% Create a random number between two limits %/ Listener
public static int getRandomMumber (int from, int to) o

inferred queries

|H## Thiz claszs simulates the process of card dealmg,, Each i COdeBrOker

Editing space

-+ Cardlealer,java  10-0% 02:08 PH 0,97  (JDE)--L10--All
A% An example for getInt wreitten by yurwen "Fri Oct 5 14:00:58 2001"*/
import com,objectspace, jgl.util, ®:
*#¥ Foll a die and print the probability of each rnumber's ococurtence #/
public class DiceRoller {
final static int times=100003%

< Reposit@

public static woid main{String args[1) 1 . ag
int[] distribution=new int[E]:
el Fetcher
for (int i=03 i<times: i++) | Example
p = Randomizer,getIntil, B):
\ distribution[p-1]++: retrieved components

Syztem, out,println" (Number, Dccurrences, Probability)"d:
: _ javasexamples/liceRaller, java)  (JOE)-——L10-—-Top--
0,83 getlnt Generate a random number uzing the default gpesrat
0,78 getlone Generate a random number wusing the default erat
0,73 mextInt Generates an - wern i

0,77 ne r Lenerates & Dellvery buffer iven 1
1:i% #RCI-displayx  10-05 02:08 PH 0,597 I'F'Hu-atul-:l_._
(M com, objectzpace, jgl.util,Randomizer: tint getInt{int lo, 1mt n1)




Inferring the task

O Plan recognition

m Actions -2 Inferred goal - Suggested actions or
Information

O Similarity analysis
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Similarity analysis in CodeBroke

Current situation

...,/Create a random number
= between two limits }

/% Thiz class zimulates the process of card dealing, Each card is
represented with a number from O to 51, The program should produce
a list of 52 cards, az results from & human card dealer #/
public class Cardlealer £
static int [] cards=rew int[52]:
static {
for (int i=0: i<G2: i++) cards[il=i:

int <- Int X int

T ans® *
S#% Create a random number between two limits # | mmmannt

public static int getRandomMumber (int from, int to) { F---tl's‘tener

-+%%  Cardlealer,java  10-05 02:08 PH 0,97 (JDE)--L10--All
/% An exanple for getlnt weitten by yunwen "Fri Oct 5 14:00:58 2001"%/
import com,objectspace, jol,util, *:
/4% Roll a die and print the probability of each number's occurrence #/
public class DiceRoller §
final static int times=10000%
public static woid main(String args[]) {
int[] distribution=rew int[E]:
int |E: Vi g . A
for (int i=0; i<times: i++
p = Randomizer,getInt(l, B): Itu atl on
distribution[p=1]++:

} .----.-.-. EEEEEEEEEEEER -— 3 =
System, out., pring L Number"ﬂcdﬂ‘ﬁeﬁcee:wfr‘eha.lj-lllt 1B > Int < Int X Int

_________________________________________________

CE-E:x 1[|||:ll|-*f.- gz nolezdTliceRaller, iauw -1| IT[lEI——L
1 0,89 pgetlnt| Generate a random number uzing the default generalke = SNy
2 0,78 geftlong Generate a random AUmber Uzing Lhe default generat "...‘..___ Generate a. random number
3 0,78 nextInt Generates an int value between the given limits, aebLL o .
4 0,77 ne ¢ [enerates a long '..'alue between the given limits,
1:i%  #RCI-dis k10 FH 0, i ReusableComponent Infoj——L T USIng the defaUIt generator

Elcem objectspace, jgl,util Randomizer: ,1nt getInt(lnt lo, int hi)




The rationale

O Three aspects of a program
m Concept
The functionality of the program
Semantic information
Revealed in comments, identifiers, ...
m Constraint
Execution environment
Syntactic information
Revealed in signatures, protocols, ...
m Code
The implementation

O The assumption
= Similar concept + compatible signature - reusable code




Basic information retrieval (IR)

techniques

O Information retrieval: Finding similar documents based on

the commonality of terms

m Documents and queries are represented by term vectors

Dy =(f, 5 f2 55 -0 T )

m Similarity is the distance between two vectors

Similarity (Q, D) = iQ[i]x D[i]/‘/znj Q[i]* x Z D[i]*

Term space: (factor information help human operation retrieval system)

Contents Vector Similarity

Q | human factors in information retrieval (1101011)
system

D1 | factor factor factor human human retrieval | (300201 1) 7/75°->=0.80
system

D2 | information operation retrieval retrieval (0100120 0.55

D3 | factor help help retrieval (1020010) 0.37




LSA: Improved IR

O Latent semantic analysis

m Addressing the vocabulary mismatch problem (people use
different names to refer to the same concept)

m Creating a semantic space with a large amount of documents

g - -

ucing the gular vectors

- [ -




Probabilistic IR model

O Adding weights to each term

Dj:(tl,j,tz,j, =my tN’j)
t;; = TRW, * f,,

O Term Relevance Weight
TRW; = log (p; X (1-9;) / g; X (1-p;))

pi Probability of the term appearing in relevant documents

qi Probability of the term appearing in irrelevant documents




Weighting schema 1in CodeBroker

T —n K, + Dtf. . .
sim(Q,D,) = " (log N —n. +0.5, (k, +Dtf; ; (k, +1)qtf,
S n+05 ° K+tf, k;+qtf,

N is the number of components
n; is the number of components whose documents contain the term ti

T is the number of terms in the component collection
tf; ; is the frequency of term ti in the document of the component Dj

qtf; is the frequency of term ti in the query Q
K =k, (L—b)+b-dl, /avdl

k,,k3,b are empirically determined parameters depending on the
nature of the document collection. In CodeBroker, Kk, is set
to 1.2, ky to 1.0, and b to 0.75.

dl; is the length of document D
avdl is the average length of all documents in the collection



Signature matching c

etermines the

constraint compatibil

ity

O Reusable components m
sighature

ust be compatible In

m Signature is the syntactic interface of a module (method

and class)

= Improving the precision of retrieval

O Method level match

m Exact match
Typel x Type2 -> Type3
TypeA x TypeB -> TypeC

<=> Typel=TypeA AND Type2=TypeB AND Type3=TypeC

m Relaxed match

Generalization / Specialization / Reorder

string x int -> int matches

(relaxed) long x string -> long



Signature matching for classes

public class AutomaticReception extends Vector { VOid -> bOOlean

public boolean initialize(); void -> void
public void delete(); . .
public insert(string person); Strlng -> void
gublic int length(); VOid > mt

. publTc class Queue extends Vector VOid -> bOOlean
_ void -> void
public boolean empty(); . .
public dequeue(); Ob|eCt -> void
public enqueue(Object item); - -
oublic int sizeQ): void -> int
}

7




Presenter: tailoring the delivery to

larger context and user

u = eliiis] ' L4: Component
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om umber hetue
public static int getRandomMumber (int from, int to) {
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Discourse models: Improving task-
relevance

O Discourse models capture the larger
context of programming activities

m Representing the interaction history
petween programmers and CodeBroker

® Removing irrelevant components

= Negative discourse models: specifying
what Is not of interest to programmers

m Example:
((“java.util._zip”) ;; a package
(“java.awt” (“CardLayout™))) ;; a class




User models: User-specific delivery

O User models represent programmers’
knowledge on the component repository

®= A list of kKnown components

m Example:
((““jJava.applet” (“Applet” (“getParameteriInfo™))

(“jJava.i10” (“File” (“exists”
“11/02/00” “11/10/00”
“11/11/007)

(““1sAbsolute”

“11/01/00” “11/10/00
“11/11/70077))))

= Components contained in user models are not
delivered



Incremental discourse modeling
and user modeling

O Initial user models
m Created by analyzing existing user programs

O Adaptive user models
m CodeBroker updates user models automatically when
It detects the use of a component in the editor
O Adaptable user models and discourse models

m Using the Skip Components Menu associated with
each delivered component

Skip Components Menu

CardLayout

void nexttjava,awt,Container parent) P
M This Burfer

Jawa, awt

Ouery Refinement

»
b

This Seszion
All Sessions

Added to discourse model

Orly
Only

i Added to user models




Models in CodeBroker

Session 1 Session 2

Existing
programs




Retrieval-by-reformulation

O A process for software developers to
Incrementally develop reuse queries

O Delivered components help developers become

familiar with the vocabulary and structure of the
repository

= Change the way of writing the query

= Limit the search scope by specifying (un)interested
P!Iackages and classes

-1#%  Cardlealerl, java ¢ JOE}-—-L3--Bot - ——

| Current Concept Ouery: Shuffle the cards to an arbitrary order
Current Constraint Ouery:

Filtered Componentz:  java,auwt
Interested Components: com,objectspace, jal.algorithms,Shuffling

1+%%  *CB-luery-Fef inement®

I_I.‘I " ™ 0od el ')

{Furdamental »—-L4--A11---——-——-------"o——



The cycle of

delivery-browsing-searching

O Delivered components are results of
Information reconnaissance

O Possible actions after the delivery

® The needed component is delivered
- Choose the needed one through browsing

= Too many components are delivered
- Filter the delivered components

m The needed one Is not delivered

- Search again through retrieval-by-
reformulation



Supporting comprehension and use

L]

—-ok%  Cardlealer, java  10-06 02:08 PH 0,97  (JOE)--L10--Al1

"Fri Oct 5 14:00:58 Z2001"%/

/% An example for getlnt written b
impart com,objectspace, jol,util, ®:
J¥% Boll a die and print the probabilit
public class DiceRoller {
final static int times=10000%
public static woid main(String args[ 103
int[] distribution=new int[E]:
int p?
for (int i=0: i<times: i++) {

p = Randomizer,getInt(1l, 6):
distribution[p-1]++: Exam ple

of each number's occurrence %/

rogram

Illustrator

 S—

Syztem, out, println " (Number . Occurrences, Probability)"de

0,83 getlnt Generate a random number using the default gererat
0,73 petlong Generate a random number =zina the defanlt oenerat
0,78 mextInt Generates an int walue

077 e r Generates a long wall

a|dwexa ue youess

T " PR I | "

rogram

J Address File: [/ fusr fiavalials, 1. 0fdoc) apifcom. objectspace. jgl. ukil, R.ando

@ geilnt
public static int gecIntiint la,
int hi}
Generate a random munber using the default generator,

See Also;
nextlnt

Java documentation
@ zeiLong




Evaluating retrieval effectiveness

O Recall =
No. of relevant doc. retrieved

No. of relevant doc.

O Precision =
No. of relevant doc. retrieved

No. of doc. retrieved

O Results of 19 queries
m One-third is relevant

Prob. LSA
Recall - .
Precision Precision
0 45.82 35.77
10 45.82 31.86
20 45.82 30.89
30 41.20 25.62
40 41.01 20.62
50 40.74 20.44
60 37.46 13.86
70 37.46 13.82
80 32.71 13.82
90 32.19 12.32
100 29.43 12.32




Evaluation experiments

O Experiment goals:

m Observe the effectiveness of CodeBroker in
encouraging programmers to reuse

m Analyze the effectiveness of task inference, discourse
models, and user models

O 12 experiments with 5 subjects
® Implementing an assigned task with CodeBroker

Subjects S1 S2 S3 |S4 S5

Years of prog. in general 3-4 |5-6 8 10+ | 10+

Java skill (self-evaluation) 4 7 7-8 |10 7




System assessment

breakdown of deliveries

Sub | No |total |delivered | ynanticipated | 2ticipated —|vaguely | triggered
(LaLz) [outunknown-known
1 10 4 2 2 0 0
S1
2 3 1 1 0 0 1
3 7 1 1 0 0 0
S2 4 4 1 1 0 0 0
5 5 3 0 2 1 1
6 5 2 1 1 0 1
S3 7 4 3 1 2 0 1
8 3 0 0 0 0 0
9 4 3 0 3 0 0
S4
10 3 1 1 0 0 2
11 4 1 1 0 0 2
S5
12 5 0 0 0 0 0
Sum 57 20 9 10 1 8




Role of discourse models

Subject Task Retrieved# Added to DM# Removed by DM#
T1 168 1 pkg., 1 class 45
>1 T2 28 1 pkg., 1 class 10
S2 T3 140 4 methods 0
T3 80 1 pkg. 7
>4 T5 140 2 pkgs. 68
Other 7 experiments 872 0 0

O Discourse models removed irrelevant
components

O Larger tasks may make programmers add
more components to discourse models




Role of user mode

Retrieved Removed | User System
added added

168 15 0 0

28 0 0 0

140 S 0 0

52 0 0 0

160 14 2 5

60 0 0 6

20 1 0 0

60 0 0 0

80 0 0 0

140 0 0 0

100 1 0 9

420 0 0 0

User models removed few
components

m Incomplete user models

m Most of the delivered
components were unknown

Removed components not
reusable

User models too simple
m Unforgiving
m No decaying mechanism



Problems found

O Irrelevant components
- More sophisticated task modeling techniques

O Abstraction mismatch from queries to
components

- Indexing based on usage

O Lack of guidance in refining queries
- Guidance on the choice of terms

O Lack of configurability
- More user-friendly interface

O Lack of examples
- The development of the lllustrator agent



Future research

O Long-term user models and their evaluation in
natural settings

O Distributed CodeBroker supporting software
development communities

m Make programmers aware of reusable components

m Bring together programmers working on similar
programs

| delivering

189)/01g9p0D
/
¥




General lesson: Designing information
repOSItory systems

O Two modes of designing and using
Information repository

= Filtering the input vs. Filtering the output

I
I /\ B
o I v
— /\ -_— (— -
© information c [ I t+ —5
=In i = ' =) information [
= repository |l | < : o —
-
R , = repository |«
= 5 < ' = =
i = | = DR
u I
I L |

I
key

%designerj%active user %passive user




Summary

O Better understanding of cognitive difficulties
of component reuse
= Unknown components
= Low reuse utility

O A new type of component repository systems
= Active component repository systems

O Contributions to the design of information
repository systems in general
= Similarity analysis-based task modeling
m Focusing output filter instead of input filter
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