Wisdom is not the product of schooling but the lifelong attempt to acquire it. - Albert Einstein

Overview of Learning

Gerhard Fischer, Hal Eden, Hiroaki Ogata and Eric Scharff
Spring Semester 2002

January 28, 2002
A Chinese Saying

I hear and I forget,

I see and I remember,

I do and I understand.
Some Claims about Learning

- people learn best when engrossed in the topic, motivated to seek out new knowledge and skills because they need them in order to solve the problem at hand.

- real learning — the way we learn is trying something, doing it and getting stuck. In order to learn, we really have to be stuck, and when we’re stuck we are ready for the critical piece of information. The same piece of information that made no impact at a lecture makes a dramatic impact when we’re ready for it.

- "A major illusion on which the school system rests is that most learning is the result of teaching" — Ivan Illich (in "Deschooling Society")

- learning and teaching are not inherently linked:
 - much learning takes place without teaching
 - much teaching takes place without learning
- Learning and Media

Adding Technology to Existing Educational Practice

Current Education

Multimedia

Current Education wrapped in Technology

ITS
Learning and Media

Rethinking, Reinventing and Reengineering Educational Theory and Educational Practice

Current Education

Computer-supported & Computer-mediated Education of the Future

Fischer, Spring 2002
How the World Has Changed

<table>
<thead>
<tr>
<th>dimension</th>
<th>old paradigm</th>
<th>new paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>information</td>
<td>scarce</td>
<td>plentiful</td>
</tr>
<tr>
<td>reproduction of documents</td>
<td>expensive and restricted</td>
<td>cheap</td>
</tr>
<tr>
<td>specialization</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>change within a human life time</td>
<td>slow</td>
<td>fast</td>
</tr>
<tr>
<td>interaction / collaboration</td>
<td>physical proximity</td>
<td>shared professional interests</td>
</tr>
<tr>
<td>economy</td>
<td>rigid, hierarchical organizations, long-term personal identity</td>
<td>dynamic economy, flexibility, networking, no long-term</td>
</tr>
</tbody>
</table>
Learning in Humans and Machines

• **machine learning** = subfield of AI concerned with programs that learn from experience
 - applied learning systems — a practical necessity?
 * to overcome the tedious work of programming
 * the ultimate form of knowledge acquisition in knowledge-based systems
 - machine learning as a science
 * understand human learning well enough to reproduce aspects of that learning behavior in computer systems
 * computer enforces a commitment to fine-structure process-level detail
 * exploration of alternative learning mechanism complementing human learning methods

• **in this course**: we are interested in computational media and environments in support of **human learning** (specifically in the context of design and collaboration)
Global Theories about Learning

- **B. F. Skinner (1904 – 1990)** — behavior is affected by its consequences. We reward and punish people, for example, so that they will behave in different ways. programmed instruction, multiple choice questions

- **Jean Piaget (1896-1980)** — developmental psychology and genetic epistemology: how does knowledge grow? children's logic and modes of thinking are initially entirely different from those of adults

- **Lev Vygotsky (1896-1934)** — social interaction plays a fundamental role in the development of cognition computer-supported collaborative learning (CSCL)

- **John Dewey (1859-1952)** — application of his theory of knowledge to education: informal education, passion for democracy (public vs private schools) exploration of thinking and reflection (Donald Schon), environments for learning
Global Theories about Learning

- **Ivan Illich** — convivial tools, deschooling society → learning webs

- **Seymour Papert** — constructionism → LOGO, Turtle Geometry

- **Frederick W. Taylor (1856-1915)** — scientific management: the study of relationships between people and tasks for the purpose of redesigning the work process to increase efficiency
Transcending Skinner and Taylor

<table>
<thead>
<tr>
<th>Skinner/Taylor</th>
<th>Beyond Skinner and Taylor</th>
</tr>
</thead>
<tbody>
<tr>
<td>there is a “scientific,” best way to learn and to work (programmed instruction, computer-assisted instruction, production lines, waterfall models)</td>
<td>→ real problems are ill-defined and wicked; design is argumentative, characterized by a symmetry of ignorance among stakeholders</td>
</tr>
<tr>
<td>separation of thinking, doing, and learning</td>
<td>→ integration of thinking, doing, and learning</td>
</tr>
<tr>
<td>task domains can be completely understood</td>
<td>→ understanding is partial; coverage is impossible</td>
</tr>
<tr>
<td>objective ways to decompose problems into standardizable actions</td>
<td>→ subjective, situated personal interests; need for iterative explorations</td>
</tr>
<tr>
<td>all relevant knowledge can be explicitly articulated</td>
<td>→ much knowledge is tacit and relies on tacit skills</td>
</tr>
<tr>
<td>teacher / manager as oracle</td>
<td>→ teacher / manager as facilitator or coach</td>
</tr>
<tr>
<td>operational environment: mass markets, simple products and processes, slow change, certainty</td>
<td>→ customer orientation, complex products and processes, rapid and substantial change, uncertainty and conflicts</td>
</tr>
</tbody>
</table>
Human Learning: Current Theories

• learning is a process of knowledge construction, not of knowledge recording or absorption → constructivism, constructionism

• learning is knowledge-dependent; people use their existing knowledge to construct new knowledge → differential descriptions, user models

• learning is highly tuned to the situation in which it takes place → domain-orientation, human problem-domain communication

• learning needs to account for distributed cognition requiring to combine knowledge in the head with knowledge in the world → learning on demand, using on demand, “basic” skills (example: hand-held calculator)

• learning is affected as much by motivational issues as by cognitive issues
“Basic” Skills in the Age of Computational Media

• “basic” skills
 - question: if most job-relevant knowledge must be learned on demand what is the role of “basic” education?
 - what is the critical background knowledge which makes learning on demand feasible?
 - question: do “basic skills” change their meaning under the influence of technology?

• example: influences / changes by hand-held calculators
 step 1: ignore the existence of the gadget
 step 2: make people learn arithmetic, multiplication tables, long division, drawing square root by hands → and after they have it all mastered, they can use hand-held calculators
 step 3: create / invent new calculators, which makes learning these skills more fun and creates a deeper understanding
 step 4: find new ways to distribute responsibilities between humans and machines
 - humans do the qualitative reasoning, use estimation skills
 - machines do the detailed quantitative computations

ask the same questions: spelling checkers, grammar programs, assembly language, mathematica, training of pilots for today’s aircrafts, ……..
Motivation

• **claims:**
 - the chief impediments to learning are not cognitive but motivational
 - people can learn many things if they *want* to
 - motivation is a tricky problem in learning because while it plays a major role, it is not well understood

• **impact of our approach on motivation:**
 - make information relevant to the task at hand
 - create interesting products
 - provide multiple learning opportunities
 - provide challenges matched to skill levels
 - create communities (among peers, over the net)
 - provide access to real practitioners and experts
Optimal Flow as a Motivating and Driving Force in Learning

- architectures and concepts for optimal flow:
 - low threshold and high ceiling
 - increasingly complex micro-world
 - co-adaptive systems
Different Approaches to Learning

<table>
<thead>
<tr>
<th>concept</th>
<th>definition</th>
<th>strengths</th>
<th>weaknesses</th>
<th>media support</th>
</tr>
</thead>
<tbody>
<tr>
<td>learning by being told</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>just-in-time learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>learning on demand</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>integration of working and learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>self-directed learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>discovery learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>problem-based learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>collaborative learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>organizational learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lifelong learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Myths and Misconceptions

• Computers by themselves will change education

• Information is a scarce resource

• “Ease of use” is the greatest challenge or the most desirable goal for new technologies

• The content, value, and quality of information and knowledge is improved just because it is offered in multi-media or over the WWW

• The “Nobel Prize winner” myth: Every school child will have access to a Nobel Prize winner

• The single or most important objective of computational media is reducing the cost of education
Co-Evolution: Beyond “Technology-Driven Developments” and “Gift-Wrapping”

learning, working and collaboration

new media and new technologies

new learning organizations
Some References about Learning

