
Wisdom is not the product of schooling but the lifelong attempt to acquire it. - Albert Einstein

Overview of Collaboration

Gerhard Fischer, Hal Eden, Hiroaki Ogata and Eric Scharff Spring Semester 2002

January 30, 2002

The Aided, Collective Human Mind — Exploiting the Social

Collaboration —With Whom

"Division of labor is a cultural universal"

- ourselves e.g., capturing our thoughts of the past → reflexive CSCW
- all stakeholders e.g., clients, designers, customers, users → symmetry of ignorance, communities of interest (CoI)
- colleagues e.g., supporting long-term, indirect collaboration
 → collaborative work practices, design rationale
- tools e.g., knowing which tools exist, how they can be used, how they can be tailored to our specific needs → high-functionality applications
- domains e.g., domain abstractions (ontologies), standard examples
 → communities of practices (CoP), catalog examples, cases
- critics and agents e.g., shared knowledge of the task at hand, information volunteering → intrusiveness, information volunteering

Distributed Cognition

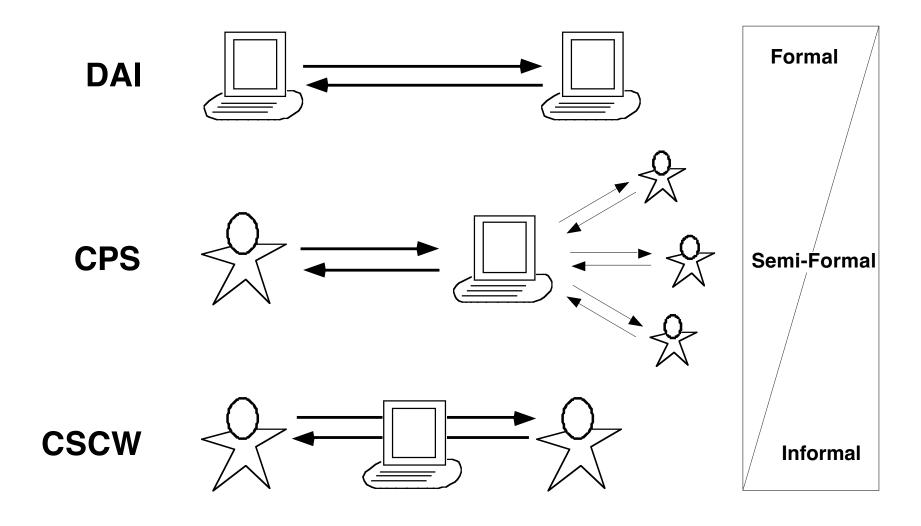
between:

- **socially** (human beings) → challenge: increase in socially shared cognition and practice Wittgenstein: "If a lion could speak would we understand him?"
- **technologically** (humans and things/computational artifacts)
- **temporally** (across time)
- spatially (across space)

advantage of humans:

- shared understanding
- background knowledge

• advantage of things (Illich, p 125):


"a thing is available at the bidding of the user — or could be — whereas persons formally become a skill resource only when they consent to do so, and they can also restrict time, place, and methods as they choose."

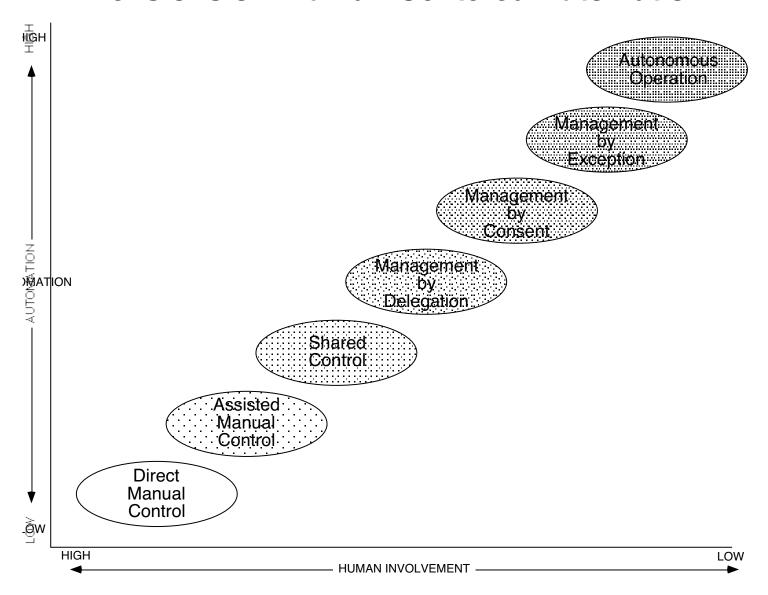
→ the "Nobel Prize Winner" fallacy

Classification of Collaborative Systems

- Distributed Computing / Distributed AI (DAI)
 - computers and computers
 - all information must be interpretable by computer
- Collaborative (Design) Environments
 - computers and humans
 - mixture between interpretable and computer-mediated information structures
- Computer-Supported Cooperative Work (CSCW) and Learning (CSCL)
 - humans and humans
 - computer-mediated
 - most information is not interpretable by computers

Classification of Collaborative Systems

Two Major Approaches in Human-Computer Collaboration


L. Terveen "An Overview of Human-Computer Collaboration"

- complementary approach
 - based on the asymmetry between human and computer
 - claim: the design of the collaboration is not only a problem of simulating human to human collaboration but of inventing engineering alternatives to interaction related properties
- emulation or replacement approach (for example: use of natural language, speech,)
- collaborative human-computer systems require
 - to specify a division of labor between human and computer (what part of the task should be exercised by human beings and/or by the computer?)
 - to design a communication protocol that can be used to coordinate and mutually enhance the efforts of the participants

Example: Principles of Human-Centered Aircraft Automation

- **Premise:** The pilot bears the ultimate responsibility for the safety of any flight operation.
- Axiom: The pilot must be in command
- Corollaries:
 - to command effectively, the pilot must be involved
 - to be involved, the pilot must be informed
 - the pilot must be able to monitor the automated systems
 - automated systems must therefore be predictable
 - the automated systems must also be able to monitor the pilot
 - each element in the system must have knowledge of the other's intent

Dimensions of "Human-Centered Automation"

Supporting Indirect, Long-Term Collaborative Design

why

- direct communication is impossible, impractical or undesirable
- communication is shared around artifacts and information space evolution
- designers need to be informed within the context of their work on real-world design problems

lessons learned

- people do not know what they do not know → information delivery techniques need to complement information access techniques
- information access: browsing is not good enough in large information spaces and queries cannot be articulated → use the artifact itself as a query

more information: G. Fischer, J. Grudin, A. Lemke, R. McCall, J. Ostwald, B. Reeves and F. Shipman: "Supporting Indirect, Collaborative Design with Integrated Knowledge-Based Design Environments", Special Issue on Computer Supported Cooperative Work,in Human-Computer Interaction Journal, Vol. 7, No. 3, 1992, pp. 281-314

Different Dimensions of CSCW

Time	►		
Place	Same	Different Predictable	Different Unpredictable
▼ Same	meeting rooms	work shifts	team rooms
Different Predictable	tele conferencing	email	collaborative writing
Different Unpredictable	broadcast seminars	computer conferences	long-term indirect collaboration

Collaborative Work Practices

Nardi, B. A. (1993) *A Small Matter of Programming,* The MIT Press, Cambridge, MA

- from individual to groups (programming communities of cooperating users)
- continuum of (programming) skill from end users to "local developers / power users / gardeners " to programmers
 - end-users = little programming education; no interest in computers per se
 - local developers = domain experts with programming knowledge and interest
 - programmers = professionally educated
- example domains: high-functionality applications (word processors, spreadsheets, multi-media environments)
- prerequisite for the development of collaborative work practices and programming communities:
 - use of a common software system
 - modification components (macros, embedded language,)

WWW: From Broadcast to Collaboration Medium

The Web as Broadcast Medium

Broadcast with Feedback

Evolutionary and Collaborative Design

Example of Shared Evolvable Information Repositories

- DynaSites at http://Seed.cs.colorado.edu/dynasites.documentation.fcgi
- Swiki (collaborative websites) → http://swiki.cs.colorado.edu:3232/dlc/40
- Expert Exchange: http://www.experts-exchange.com/
- Phoaks ("People Helping One Another Know Stuff"): http://www.phoaks.com/
- Open Source Eric Raymond → see:
 http://www.tuxedo.org/~esr/writings/cathedral-bazaar/
- Open Systems = "open source for the rest of us" Eric Scharff

Open Systems

- model: open source an intellectual paradigm requiring a new mindset
 - an intellectual paradigm requiring a new mindset
 - objective: leverage is gained by engaging the whole world as a talent pool
 - from users/consumers → co-designers/active contributors
- some examples of decentralized, evolvable information repositories
 - open source: collaborative development of software
 - the scientific method/enterprise itself
 - insight: "software/knowledge is not a commodity to be consumed but is a collaboratively designed and constructed artifact"

some characteristics:

- evolutionary design of complex systems → seeding, evolutionary growth, reseeding (SER) model
- success stories so far: with technically sophisticated developers (e.g., Unix Shell, Linux), not end-users
- social capital and gift cultures: social status is determined not by what you control but by what you give away

Self-Analysis of L3D as a Learning Organization

- homogenous versus heterogeneous computing environment
- collaborative work practices (power-user, local developers)
- jointly created and evolved information repositories:
 - Dynagloss
 - Endnote
 - Websites of Center, Research Project
 - Websites of Courses
- establish and share work practices and information:
 - information producers: "who do I tell?"
 - information consumers: "who do I ask?"

Reinterpreting Motivation at a Collaboration Level

- who is the beneficiary and who has to do the work?
- organizational memories: what will make employees want to share?
- people need to make explicit what they know and take the trouble to enter it into the system
- collaboration depends on a social and economic system which values altruism
 - capitalism is selfish
 - claim: "until the free distribution of knowledge is rewarded economically, there is little incentive for individuals and organizations to share information"

Questions about Collaboration

- How do we get people to share, and what should they share?
- What is the relation between collaborative learning and individual learning?
- What are success stories for collaboration?
- Which kind of processes are needed to support collaborative learning?
- learning organization (but: individuals learn) → how exactly does the organization learn?
 - collaborative work practices (complement each others knowledge)
 - external artifacts (products, processes, group memories)
- how much can we get a "free lunch" by capturing and repackaging information that already exists? (e.g., recommender systems (such as PHOAKS), extracting information from bookmarks,)

References

- Grudin, J. (1994) "Computer-Supported Cooperative Work: History and Focus," IEEE Computer, 27(5), pp. 19-26.
 Available at: http://www.ics.uci.edu/~grudin/Papers/IEEE94/IEEEComplastsub.html.
- Illich, I. (1971) Deschooling Society, Harper and Row, New York. (specifically: Chapter 6: "Learning Webs"
- Moran, T. P. & Carroll, J. M. (Eds.) (1996) Design Rationale: Concepts, Techniques, and Use, Lawrence Erlbaum Associates, Inc., Hillsdale, NJ.
- Nardi, B. A. (1993) A Small Matter of Programming, The MIT Press, Cambridge, MA.
- Resnick, L. B., Levine, J. M., & Teasley, S. D. (Eds.) (1991) Perspectives on Socially Shared Cognition, American Psychological Association, Washington, D.C.
- Terveen, L. G. (1995) "An Overview of Human-Computer Collaboration," Knowledge-Based Systems Journal, Special Issue on Human-Computer Collaboration, 8(2-3), pp. 67-81.
- Hollan, J., Hutchins, E., & Kirsch, D. (2001) "Distributed Cognition: Toward a New Foundation for Human-Computer Interaction Research." In J. M. Carroll (Ed.) Human-Computer Interaction in the New Millennium, ACM Press, New York, pp. 75-94.
- Dieberger, A., Dourish, P., Hook, K., Resnick, P., & Wexelblat, A. (2000) "Social Navigation: Techniques for Building More Usable Systems," *Interactions*, 7(6), pp. 36-45.
- Terveen, L. & Hill, W. (2001) "Beyond Recommender Systems: Helping People Help Each Other." In J. M. Carroll (Ed.) *Human-Computer Interaction in the New Millennium,* ACM Press, New York, NY, pp. 487-509.
- Raymond, E. S. & Young, B. (2001) The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental Revolutionary, O'Reilly & Associates, Sebastopol, CA.