
0018-9162/05/$20.00 © 2005 IEEE50 Computer

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

The Gator Tech
Smart House:
A Programmable
Pervasive Space

R esearch groups in both academia and
industry have developed prototype sys-
tems to demonstrate the benefits of per-
vasive computing in various application
domains. These projects have typically

focused on basic system integration—intercon-
necting sensors, actuators, computers, and other
devices in the environment.

Unfortunately, many first-generation pervasive
computing systems lack the ability to evolve as new
technologies emerge or as an application domain
matures. Integrating numerous heterogeneous ele-
ments is mostly a manual, ad hoc process. Inserting
a new element requires researching its characteris-
tics and operation, determining how to configure
and integrate it, and tedious and repeated testing to
avoid causing conflicts or indeterminate behavior
in the overall system. The environments are also
closed, limiting development or extension to the
original implementers.

To address this limitation, the University of
Florida’s Mobile and Pervasive Computing Labora-
tory is developing programmable pervasive spaces
in which a smart space exists as both a runtime envi-
ronment and a software library.1 Service discovery
and gateway protocols automatically integrate sys-
tem components using generic middleware that
maintains a service definition for each sensor and

actuator in the space. Programmers assemble ser-
vices into composite applications, which third par-
ties can easily implement or extend.

The use of service-oriented programmable spaces
is broadening the traditional programmer model.
Our approach enables domain experts—for exam-
ple, health professionals such as psychiatrists or gas-
troenterologists—to develop and deploy powerful
new applications for users.

In collaboration with the university’s College of
Public Health and Health Professions, and with fed-
eral funding from the National Institute on
Disability and Rehabilitation Research (NIDRR),
we are creating a programmable space specifically
designed for the elderly and disabled. The Gator
Tech Smart House in Gainesville, Florida, is the cul-
mination of more than five years of research in per-
vasive and mobile computing. The project’s goal is
to create assistive environments such as homes that
can sense themselves and their residents and enact
mappings between the physical world and remote
monitoring and intervention services.

SMART HOUSE TECHNOLOGIES
Figure 1 shows most of the “hot spots” that are

currently active or under development in the Gator
Tech Smart House. An interactive 3D model avail-
able at www.icta.ufl.edu/gt.htm provides a virtual

Many first-generation pervasive computing systems lack the ability to
evolve as new technologies emerge or as an application domain matures.
Programmable pervasive spaces, such as the Gator Tech Smart House,
offer a scalable, cost-effective way to develop and deploy extensible
smart technologies.

Sumi Helal
William
Mann
Hicham
El-Zabadani
Jeffrey King
Youssef
Kaddoura
Erwin Jansen
University of Florida

tour of the house with up-to-date descriptions of
the technologies arranged by name and location.

Smart mailbox. The mailbox senses mail arrival
and notifies the occupant.

Smart front door. The front door includes a
radio-frequency identification (RFID) tag for key-
less entry by residents and authorized personnel. It
also features a microphone, camera, text LCD,
automatic door opener, electric latch, and speakers
that occupants can use to communicate with and
admit visitors.

Driving simulator. The garage has a driving sim-
ulator to evaluate elderly driving abilities and gather
data for research purposes.

Smart blinds. All windows have automated
blinds that can be preset or adjusted via a remote
device to control ambient light and provide privacy.

Smart bed. The bed in the master bedroom has
special equipment to monitor occupants’ sleep pat-

terns and keep track of sleepless nights.
Smart closet. The master bedroom closet will, in

the future, make clothing suggestions based on out-
door weather conditions.

Smart laundry. In combination with the smart
closet, future RFID-based technology will notify res-
idents when to do laundry as well as help sort it.

Smart mirror. The master bathroom mirror dis-
plays important messages or reminders—for exam-
ple, to take a prescribed medication—when needed.
This technology could be expanded to other rooms.

Smart bathroom. The master bathroom includes
a toilet paper sensor, a flush detector, a shower that
regulates water temperature and prevents scalding,
and a soap dispenser that monitors occupant clean-
liness and notifies the service center when a refill is
required. Other technologies under development
measure occupant biometrics such as body weight
and temperature.

March 2005 51

Smart
laundry

(F)

Smart
projector

(O)
SmartWave

(E)

Social-
distant dining

(O)

Smart
floor
(E)

Smart
display

(E)

Smart
blinds

(E)

Home security
monitor

(O)

Smart
plug
(E)

Smart
bed
(O)

Smart
closet

(F)

Smart
bathroom

(E/O)

Smart
mirror

(E)

Smart
front door

(E)

Ultrasonic
location tracking

(E)

Driving
simulator

(E)

Smart
mailbox

(E)

Figure 1. Gator Tech
Smart House. The
project features
numerous existing
(E), ongoing (O), or
future (F) “hot
spots” located
throughout the
premises.

52 Computer

Smart displays. With the display devices
located throughout the house, entertainment
media and information can follow occupants
from room to room.

SmartWave. The kitchen’s microwave oven
automatically adjusts the time and power set-
tings for any frozen food package and shows
users how to properly prepare the food for
cooking.

Smart refrigerator/pantry. A future refrig-
erator will monitor food availability and con-
sumption, detect expired food items, create
shopping lists, and provide advice on meal
preparation based on items stored in the
refrigerator and pantry.

Social-distant dining. Occupants will be
able to use Immersive video and audio technolo-
gies installed in the breakfast nook to share a meal
with a distant relative or friend.

Smart cameras. Image sensors monitor the front
porch and patio for privacy and security.

Ultrasonic location tracking. Sensors, currently
installed only in the living room, detect occupants’
movement, location, and orientation.

Smart floor. Sensors in the floor, currently only in
the kitchen and entertainment center area, identify
and track the location of all house occupants. We
are also developing technologies to detect when an
occupant falls and to report it to emergency services.

Smart phone. This “magic wand for the home”
integrates traditional telephone functions with
remote control of all appliances and media players
in the living room. It also can convey reminders and
important information to home owners while they
are away.

Smart plugs. Sensors behind selected power out-
lets in the living room, kitchen, and master bed-
room detect the presence of an electrical appliance
or lamp and link it to a remote monitoring and
intervention application.

Smart thermostats. In the future, occupants will
be able to personalize air conditioning and heat set-
tings throughout the house according to daily tasks
or context—for example, they could slightly
increase the temperature when taking a shower on
a cold winter night.

Smart leak detector. Sensors in the garage and
kitchen can detect a water leak from the washing
machine, dishwasher, or water heater.

Smart stove. This future device will monitor
stove usage and alert the occupant, via the smart
bed, if the stove has been left on.

Smart projector. We are developing a projector
that uses orientation information provided by ultra-

sonic location tracking and displays cues, reminders,
and event notifications to the living room wall that
the occupant is currently facing.

Home security monitor. A security system under
development continually monitors all windows and
doors and, upon request, informs the resident
whether any are open or unlocked.

Emergency call for help. A future system will
track potential emergencies, query the resident if it
suspects a problem, and issue a call for outside help
when necessary.

Cognitive assistant. Another system under devel-
opment guides residents through various tasks and
uses auditory and visual cues to provide reminders
about medications, appointments, and so on.

MIDDLEWARE ARCHITECTURE
To create the Gator Tech Smart House, we devel-

oped a generic reference architecture applicable to
any pervasive computing space. As Figure 2 shows,
the middleware contains separate physical, sensor
platform, service, knowledge, context manage-
ment, and application layers. We have implemented
most of the reference architecture, though much
work remains to be done at the knowledge layer.

Physical layer
This layer consists of the various devices and

appliances the occupants use. Many of these are
found in a typical single-family home such as
lamps, a TV, a set-top box, a clock radio, and a
doorbell. Others are novel technologies such as the
SmartWave and the keyless entry system adapted to
the Smart Home’s target population.

Sensors and actuators such as smoke detectors,
air conditioning and heating thermostats, and secu-
rity-system motion detectors are part of the phys-
ical layer as well. In addition, this layer can include
any object that fulfills an important role in a space,
such as a chair or end table.

Sensor platform layer
Not all objects in a given space can or should be

accounted for. For example, it may be desirable to
capture a toaster, which could cause a fire if inad-
vertently left on, but not a blender. Each sensor
platform defines the boundary of a pervasive space
within the Smart House, “capturing” those objects
attached to it. A sensor platform can communicate
with a wide variety of devices, appliances, sensors,
and actuators and represent them to the rest of the
middleware in a uniform way.

A sensor platform effectively converts any sen-
sor or actuator in the physical layer to a software

A sensor platform
effectively converts

any sensor or
actuator in the

physical layer to a
software service

that can be
programmed or
composed into
other services.

service that can be programmed or composed into
other services. Developers can thus define services
without having to understand the physical world.
Decoupling sensors and actuators from sensor plat-
forms ensures openness and makes it possible to
introduce new technology as it becomes available.

Service layer
This layer contains the Open Services Gateway

Initiative (OSGi) framework, which maintains
leases of activated services.

Basic services represent the physical world
through sensor platforms, which store service
bundle definitions for any sensor or actuator rep-
resented in the OSGi framework. Once powered
on, a sensor platform registers itself with the ser-
vice layer by sending its OSGi service bundle def-
inition.

Application developers create composite services
by using a service discovery protocol to browse
existing services and using other bundle services to
compose new OSGi bundles. Composite services
are essentially the applications available in the per-
vasive space.

A set of de facto standard services may also be
available in this layer to increase application devel-
opers’ productivity. Such services could include
voice recognition, text-to-speech conversion, sched-
uling, and media streaming, among many others.

Knowledge layer
This layer contains an ontology of the various ser-

vices offered and the appliances and devices con-
nected to the system. This makes it possible to reason
about services—for example, that the system must
convert output from a Celsius temperature sensor to
Fahrenheit before feeding it to another service.

Service advertisement and discovery protocols
use both service definitions and semantics to regis-
ter or discover a service. The reasoning engine
determines whether certain composite services are
available.

Context management layer
This layer lets application developers create and

register contexts of interest. Each context is a graph
implemented as an OSGi service wire API linking var-
ious sensors together. A context can define or restrict

March 2005 53

Application layer
Integrated
development
environment

Service
composer

Application
manager

Context
builder Debugger Simulator

Context management
layer

Sensor Sensor/actuatorActuator

Sensor platform
layer

.

Service layer

OSGi framework

Knowledge layer

Physical
layer

Appliances/devices/objects

Service

Service registration

Service discovery

 Knowledge
and service
semantics

Reasoning
engine

Context
graphs

Sensor/actuator
layer

Context detection
and maintenance

engine

Sensor/actuator
firmware

Sensor/actuator
firmware

Sensor/actuator
firmware

Sensor/actuator
firmware

OSGi service
bundle definition

OSGi service
bundle definition

OSGi service
bundle definition

OSGi service
bundle definition

Physical world layer

Service

Service

Composite
services

Service
Basic

services
ServiceService

Service

ServiceService

Service

.

Figure 2. Smart-
space middleware.
This generic
reference
architecture is
applicable to any
pervasive
computing
environment.

54 Computer

service activation for various applications; it can also
specify states that a pervasive space cannot enter.

The context engine is responsible for detecting,
and possibly recovering from, such states. Our ref-
erence architecture has no fixed context-aware pro-
gramming model.

Application layer
This layer consists of an application manager to

activate and deactivate services and a graphical-
based integrated development environment with
various tools to help create smart spaces. With the
context builder a developer can visually construct
a graph that associates behavior with context; a
programmer also can use it to define impermissi-
ble contexts and recovery services. In addition,
developers can use the service composer to browse
and discover services as well as compose and reg-
ister new ones. Other tools include a debugger and
simulator.

CONTEXT AWARENESS
Programming an intelligent space such as the

Gator Tech Smart House involves three distinct
activities:

• Context engineering—interpreting sensory
data and identifying high-level states of inter-
est such as “hot” and “sunny.”

• Software engineering—describing the various
software components’ behavior—for example,
turning on the heater or generating a possible
menu from a set of ingredients.

• Associating behavior with context—defining
which pieces of software can execute in a par-
ticular context and which pieces the system
should invoke upon a contextual change.

Critical to this process is the observe-control
interaction between sensors and actuators, as
shown in Figure 3.

Abstracting sensory data
The Smart House obtains information about the

world through various sensors and can use this data
to undertake certain actions. The typical home like-
wise relies on sensors to effect changes—for exam-
ple, if it gets too cold, the thermostat will activate
the heater. However, what distinguishes a truly
robust context-aware system such as the Smart
House is the ability to abstract state information
and carry out actions that correspond to these high-
level descriptions.2,3

Most sensors are designed to detect a particular
value in one domain. For example, a temperature
sensor might determine that it is 95 degrees
Fahrenheit in the house, or a light sensor might
record 10,000 lux of light coming through the win-
dow. However, hard-coding behavior for each pos-
sible combination of direct sensor values is difficult
to implement, debug, and extend.

It is far easier to associate actions with abstrac-
tions such as “hot” and “sunny,” which encompass
a range of temperature and luminescence values.
When it is hot, the system turns on the air condi-
tioning; if it is sunny outside and the television is
on, the system closes the blinds to reduce glare. This
approach can easily be extended to various con-
texts—for example, if the resident is on a diet, the
system could prevent the SmartWave from cook-
ing a greasy pizza.

Context management
In addition to sensors, the Smart House consists

of actuators—physical devices with which people
can interact. An actuator can change the state of
the world. Sensors, can, in turn, observe an actua-
tor’s effect. For example, a light sensor might deter-
mine that the house or resident turned on a lamp.
Based upon the observed state of the world, the
house or resident might activate an actuator.

Every actuator in the Smart House has a certain
intentional effect on a domain, which a sensor that
senses that particular domain can observe. For
example, the intentional effect of turning on the
heater is to increase the temperature.

Given a clear description of an actuator’s inten-
tional effect, it is possible to determine acceptable
behaviors for a given context by examining all pos-
sible behaviors in the current state and identifying
which intentional effects are mutually exclusive.
This guarantees, for example, that the system will

CF
Sensor

Actuator

Human
or software

Observes

Influences

Controls

Figure 3. Sensor
and actuator
interaction.
Actuators influence
sensors, which
observe the state of
the world and can
in turn cause the
system or a user
to activate the
actuator.

never invoke the air conditioning and heater simul-
taneously.

Context changes can occur due to

• an actuator’s intentional effect—for example,
after turning on the heater, the house temper-
ature goes from “cold” to “warm”; or

• a natural or otherwise uncontrollable force or
event—for example, the setting sun causes a
change from “daytime” to “nighttime.”

Ideally, a smart space that enters an impermissi-
ble context should try to get out of it without
human monitoring. Toward this end, we are
exploring ways that will enable the Smart House
to learn how to invoke a set of actuators based
upon state information to automatically self-cor-
rect problems.

Given a standardized description of an actuator’s
intentional behavior in a certain domain and how
a sensor value relates to a particular context, it
should be possible to determine which actuator to
invoke to escape from an impermissible context. If
escape is impossible, the system can inform an exter-
nal party that assistance is required. For example, if
the pantry does not contain any food and no gro-
cery-delivery service is available, the system could
inform an outside caregiver that it is time to restock.

SENSOR PLATFORM
Integration can become unwieldy and complex

due to the various types of sensors, software, and
hardware interfaces involved. Consider, for exam-
ple, climate control in a house. Normally, you would
have to hard-wire the sensors to each room, connect
these sensors to a computer, and program which port
on the computer correlates to which sensor. Further,
you must specify which port contains which type of
sensor—for example, humidity or temperature.

To systematically integrate the various devices,
appliances, sensors, and actuators and to enable
the observe-control loop in Figure 3, we created a
sensor platform that represents any attached object
in a pervasive space simply as a Java program—
more specifically, as an OSGi service bundle.

To control climate in a home, for example, you
would install a wireless sensor platform node in each
room, connect both a humidity sensor and temper-
ature sensor to each node, and program the firmware
for each node. In addition to the firmware, the sen-
sor platform nodes would contain the sensor driver
that decodes temperature and humidity data.

Simply powering up a sensor node causes it to
transmit the driver wirelessly to a surrogate node,

such as a home PC, where the sensors are immedi-
ately accessible via other applications. The PC
would require no configuration or hardware inter-
facing. The sensor driver is surrogate software—
Java bytecode that contains static information
about the sensor and the services it provides—
stored in an electrically erasable programmable
read-only memory (EEPROM) on the sensor plat-
form node. The platform itself does not understand
or process the code; rather, it processes the
firmware and other low-level C programs that send
data between the sensor and platform.

The individual node architecture shown in Figure
4 is modular and provides for alternative and flex-
ible configurations. We use a stackable design to
connect alternative memory, processor, power, and
communication modules.

The memory module provides a mechanism for
easily modifying an EEPROM store used for read
and write capabilities on the node. This storage
contains bootstrap data that specifies general sen-
sor and actuator information.

The processing module currently uses an 8-bit
Atmel ATmega 128 processor. The processor is
housed on a board that is optimized for low power
consumption and has two RS232 ports, a Joint Test
Action Group (IEEE 1149) and ISP port, and more
than 50 programmable I/O pins. We are develop-
ing alternative modules with more powerful pro-
cessing capability, including an onboard Java
virtual machine.

The communication module currently uses RF
wireless communication with a simple transmis-
sion protocol. We are also testing and debugging a
10BaseT Ethernet module utilizing a simplified
IPv4 stack. Future modules will support low-power
Wi-Fi and power-line communication. The latter

March 2005 55

Sensor 1

Sensor array

Sensor 2

Actuator 1

Actuator 2

Sensor 1

Sensor 2

Sensor 3

Memory module
(EEPROM)

Processor
module

Communications
module

Power
module

Figure 4. Sensor
platform
architecture. The
modular design
provides for
alternative and
flexible
configurations.

56 Computer

will also connect to an alternative power module.
When a sensor platform is powered up, its

EEPROM data acts as a bootstrap mechanism that
provides the larger system—for example, a network
server or home PC—with the information and
behavioral components required to interact with a
specific device, appliance, sensor, or actuator. The
data can be specified as either human-readable
(XML, text with a URL, and so on) or machine-
readable (for example, Java bytecode) depending
on the specific application. In addition to bytecode,
stored data includes device-specific information
such as the manufacturer’s name, product serial
number, and sensor type.

SMART PLUGS
Creating a scalable self-sensing space is impracti-

cal using existing pervasive computing technologies.4

Most smart appliances available in the market today
do not contain a controllable interface. In addition,
numerous available protocols are incompatible. For
example, the X10 protocol offers an easy, affordable
way to turn a house into a smart one, but many
smart devices are not X10 enabled. Regardless of
the technology used, a smart space should be able
to communicate with any new smart device.5,6

To address this problem, we have developed smart
plugs, which provide an intelligent way to sense elec-
trical devices installed in an intelligent space. As
Figure 5 shows, each power outlet in the Gator Tech
Smart House is equipped with a low-cost RFID
reader connected to the main computer. Electrical
devices with power cords, such as lamps and clocks,
each have an RFID tag attached to the plug’s end
with information about the device. When a user
plugs the device into an outlet, the reader reads the
tag and forwards the data to the main computer.

OSGi bundles represent new devices to be
installed in the smart space. A bundle is simply a
Java archive file containing interfaces, implemen-
tations for those interfaces, and a special Activator
class.7 The jar file contains a manifest file that
includes special OSGi-specific headers that control
the bundle’s use within the framework.

Each RFID tag has user-data-allocated memory
that varies from 8 to 10,000 bytes. Depending on
the size of its memory, the tag itself could contain
the entire OSGi bundle representing the new device.
If the bundle is too large, the tag could instead con-
tain a referral URL for downloading the gateway
software from a remote repository. The referral
URL can use any protocol that the gateway server
has access to, such as http and ftp. Using a Web
server also makes upgrading the bundle as easy as
replacing the software.

The gateway bundles installed in the framework
perform all the required downloading and instal-
lation of the gateway software for the individual
bundles. When a user installs a new device, the sys-
tem downloads each bundle and registers it in the
OSGi framework. Upon request, the framework
can report a list of installed devices, all of which
can be controlled via methods available in the bun-
dle. In this way, the framework enacts a mapping
between the smart space and the outside world.

Figure 6 shows a user—for example, a service
technician at a monitoring center—controlling a
lamp in the Smart House via a remote application;
a click on the lamp will download all available
methods associated with this device. When the user
clicks on a method, the remote application sends a
request to the gateway to execute the action.

SMART FLOOR
In designing the Gator Tech Smart House floor,

we wanted to deploy a low-cost, accurate, unen-
cumbered, position-only location system that could
later serve as the foundation for a more powerful
hybrid system. Drawing on extensive location-track-
ing and positioning research, we initially experi-

Gateway

Outlet 1
Outlet 4

Outlet 3

Outlet 2

RFID
reader

RFID
tag

Figure 5. Smart
plugs. Each power
outlet is equipped
with a low-cost
RFID reader
connected to the
main computer,
while each
electrical device
has an RFID tag
attached to the
plug’s end with
information about
the device.

mented with an acoustic-based location system.
Using a set of ultrasonic transceiver pilots in the ceil-
ing, the master device would regularly send chirps
into the environment. Users wore vests in which
transceiver tags attached to the shoulders would lis-
ten for the chirp and respond with their own.

While this technology provides precise user posi-
tion and orientation measurements, it was inap-
propriate for the Smart House. Each room would
require a full set of expensive pilots, and residents
would have to don special equipment, which is
extremely intrusive and defeats the desired trans-
parency of a pervasive computing environment.8,9

Instead, we opted to embed sensors in the floor
to determine user location.10-12 The benefit of not
encumbering users outweighed the loss of orienta-
tion information, and the availability of an inex-
pensive sensor platform made this solution
extremely cost-effective.

We had been using Phidgets (www.phidgetsusa.
com) for various automation tasks around the
Smart House. The Phidgets Interface Kit 8/8/8 con-
nects up to eight components and provides an API
to control the devices over a Universal Serial Bus.
Each platform also integrates a two-port USB hub,

making it easy to deploy a large network of devices.
We created a grid of 1.5-inch pressure sensors
under the floor, as shown in Figure 7, and con-
nected this to the existing Phidgets network.

March 2005 57

Gateway

Power outlet

Turn Lamp Off

Get Status

Turn Lamp On

Remote monitoring center

Figure 6. Remote
monitoring of
electrical
appliances. Clicking
on a method causes
the remote
application to send
a request to the
Smart House
gateway to execute
the action.

Pressure sensor

Phidget

Figure 7. Smart-floor
tile block. The Smart
House floor consists
of a grid of 1.5-inch
pressure sensors
connected to a
network of Phidgets.

58 Computer

The smart house has a 2-inch residential-grade
raised floor comprised of a set of blocks, each
approximately one square foot. This raised surface
simplified the process of running cables, wires, and
devices throughout the house. In addition, the
floor’s slight springiness puts less strain on the knees
and lower back, an ergonomic advantage of par-
ticular interest to seniors.

We discovered another, unexpected benefit of the
raised surface: It allows us to greatly extend the pres-
sure sensors’ range. When a person steps on a tile
block, the force of that step is distributed through-
out the block. A single sensor at the bottom center
can detect a footstep anywhere on that block. In fact,
we had to add resistors to the sensor cables to reduce
sensitivity and eliminate fluctuations in the readings.

Table 1 details the costs of deploying the smart
floor in the kitchen, nook, and family room, a total
area of approximately 350 square feet. We do not
have to factor the price of the raised floor, which is
comparable to other types of residential flooring, into
our cost analysis because it is a fundamental part of
the Smart House and is used for various purposes.

The hardest part of deploying the smart floor
involved mapping the sensors to a physical loca-
tion. Installing the sensors, labeling the coordinates,
and manually entering this data into our software
took approximately 72 person-hours.

Figure 8 shows the mapping system we used for
the kitchen, nook, and family room. Tiles with solid
lines represent blocks with sensors underneath,
while those with dotted lines indicate gaps in cov-

Table 1. Smart-floor deployment costs in the kitchen, nook, and family room.

Number of Sensors/ Sensor Sensor Sensor platform Cost/
blocks block platform/block unit price unit price Total cost square foot

64 1 1/8 $10 $95 $1,400 $4

(3,10) (4,10) (5,10)

(3,0) (4,0) (5,0)(0,0) (1,0) (2,0) (6,0) (7,0) (8,0) (9,0)

(3,1) (4,1) (5,1)(0,1) (1,1) (2,1) (6,1) (7,1) (8,1) (9,1)

(3,2) (4,2) (5,2)(0,2) (1,2) (2,2) (6,2) (7,2) (8,2) (9,2)

(3,3) (4,3) (5,3)(0,3) (1,3) (2,3) (6,3) (7,3) (8,3) (9,3)

(3,4) (4,4) (5,4)(0,4) (1,4) (2,4) (6,4) (7,4) (8,4) (9,4)

(3,5) (4,5) (5,5)(0,5) (1,5) (2,5) (6,5) (7,5)

(3,6) (4,6) (5,6)(0,6) (1,6) (2,6) (6,6) (7,6)

(10,2)

(3,7) (4,7) (5,7)(1,7) (2,7) (6,7) (7,7)

(10,3)

(3,8) (4,8) (5,8)(2,8) (6,8) (7,8)

(3,9) (4,9) (5,9)(2,9) (6,9)

Figure 8. Smart-floor
mapping system.
Tiles with solid lines
represent blocks
with sensors
underneath, while
those with dotted
lines indicate gaps
in coverage due to
appliances or room
features.

erage due to appliances or room features such as
cabinets or the center island.

In the future, we intend to redeploy the smart
floor using our own sensor platform technology,
which will include spatial awareness. This will
greatly simplify the installation process and aid in
determining the location of one tile relative to
another. We will only need to manually specify the
position of one tile, and then the system can auto-
matically generate the mapping between sensors
and physical locations.

P ervasive computing is rapidly evolving from
a proven concept to a practical reality. After
creating the Matilda Smart House, a 900-

square-foot laboratory prototype designed to prove
the feasibility and usefulness of assistive environ-
ments, we realized that hacking hardware and
software together resulted in some impressive
demonstrations but not something people could
actually live in.

We designed the second-generation Gator Tech
Smart House to outlive existing technologies and
be open for new applications that researchers might
develop in the future. With nearly 80 million baby
boomers in the US just reaching their sixties, the
demand for senior-oriented devices and services will
explode in the coming years. Ultimately, our goal is
to create a “smart house in a box”: off-the-shelf
assistive technology for the home that the average
user can buy, install, and monitor without the aid
of engineers. �

Acknowledgments
We thank NIDRR for the generous funding that

made this research possible. Many students and
research assistants contributed to the Gator Tech
Smart House project, including James Russo, Steven
Van Der Ploeg, Andi Sukojo, Daniel Nieten, Steven
Pickels, Brent Jutras, and Ed Kouch. Choonhwa Lee
of Hanyang University significantly helped us to
conceptualize the reference architecture.

References
1. S. Helal, “Programming Pervasive Spaces,” IEEE

Pervasive Computing, vol. 4, no. 1, 2005, pp. 84-87.
2. A.K. Dey, “Understanding and Using Context,” Per-

sonal and Ubiquitous Computing, vol. 5, no. 1, 2001,
pp. 4-7.

3. G. Chen and D. Kotz, “A Survey of Context-Aware
Mobile Computing Research,” tech. report TR2000-

381, Dept. of Computer Science, Dartmouth College,
2001.

4. R.K. Harle and A. Hopper, “Dynamic World Mod-
els from Ray-tracing,” Proc. 2nd IEEE Int’l Conf.
Pervasive Computing and Comm., IEEE CS Press,
2004, pp. 55-66.

5. H-W. Gellerson, A. Schmidt, and M. Beigl, “Adding
Some Smartness to Devices and Everyday Things,”
Proc. 3rd IEEE Workshop Mobile Computing Sys-
tems and Applications, IEEE CS Press, 2000, pp. 3-
10.

6. H. Gellersen et al., “Physical Prototyping with Smart-
Its,” IEEE Pervasive Computing, vol. 3, no. 3, 2004,
pp. 74-82.

7. D. Marples and P. Kriens, “The Open Services Gate-
way Initiative: An Introductory Overview,” IEEE
Comm. Magazine, vol. 39, no. 12, 2001, pp. 110-
114.

8. J. Hightower and G. Borriello, “Location Systems
for Ubiquitous Computing,” Computer, Aug. 2001,
pp. 57-66.

9. G. Welch and E. Foxlin, “Motion Tracking: No Sil-
ver Bullet, But a Respectable Arsenal,” IEEE Com-
puter Graphics and Applications, vol. 22, no. 6,
2002, pp. 24-38.

10. M.D. Addlesee et al., “The ORL Active Floor,” IEEE
Personal Comm., vol. 4, no. 5, 1997, pp. 35-41.

11. H.Z. Tan, L.A. Slivovsky, and A. Pentland, “A Sens-
ing Chair Using Pressure Distribution Sensors,”
IEEE/ASME Trans. Mechatronics, vol. 6, no. 3,
2001, pp. 261-268.

12. R.J. Orr and G.D. Abowd, “The Smart Floor: A
Mechanism for Natural User Identification and
Tracking,” Proc. Human Factors in Computing Sys-
tems (CHI 00), ACM Press, 2000, pp. 275-276.

Sumi Helal is a professor in the Department of
Computer and Information Science and Engineer-
ing at the University of Florida and is director and
principal investigator of the Mobile and Pervasive
Computing Laboratory. His research interests
include pervasive and mobile computing, collabo-
rative computing, and Internet applications. Helal
received a PhD in computer science from Purdue
University. He is a senior member of the IEEE and
a member of the ACM and the Usenix Association.
Contact him at helal@cise.ufl.edu.

William Mann is a professor and chairman of the
Department of Occupational Therapy at the Uni-
versity of Florida and is director of the Rehabilita-
tion Engineering Research Center. His research
focuses on aging and disability, with an emphasis

March 2005 59

60 Computer

on compensatory strategies to maintain and pro-
mote independence. Mann received a PhD in higher
education from the University of Buffalo. He is a
member of the American Society on Aging, the
American Geriatric Society, and the Gerontologi-
cal Society of America. Contact him at wmann@
phhp.ufl.edu.

Hicham El-Zabadani is a PhD student in the
Department of Computer and Information Science
and Engineering at the University of Florida and is
a member of the Mobile and Pervasive Computing
Laboratory. His research interests include self-sens-
ing spaces, computer vision, and remote monitor-
ing and intervention. El-Zabadani received an MS
in computer science from the Lebanese American
University. Contact him at hme@cise.ufl.edu.

Jeffrey King is a PhD student in the Department of
Computer and Information Science and Engineer-
ing at the University of Florida and is a member of
the Mobile and Pervasive Computing Laboratory.
His research interests include security in pervasive
computing systems, context-aware computing,
thermodynamically reversible computing, and real-

time graphics rendering. King received an MS in
computer engineering from the University of
Florida. He is a member of the ACM. Contact him
at jeffking@cise.ufl.edu.

Youssef Kaddoura is a PhD student in the Depart-
ment of Computer and Information Science and
Engineering at the University of Florida and is a
member of the Mobile and Pervasive Computing
Laboratory. His research interests include indoor
location tracking and location- and orientation-
aware pervasive services. Kaddoura received an MS
in computer science from the Lebanese American
University. Contact him at yok@cise.ufl.edu.

Erwin Jansen is a PhD candidate in the Depart-
ment of Computer and Information Science and
Engineering at the University of Florida and is a
member of the Mobile and Pervasive Computing
Laboratory. His research interests include pro-
gramming models for pervasive computing, con-
text awareness, artificial intelligence, and peer-to-
peer systems. Jansen received an MS in computer
science from Utrecht University. Contact him at
ejansen@cise.ufl.edu.

Thank
you

www.computer.org/CSIDC/

The IEEE

Computer Society

thanks these sponsors

for their contributions

to the Computer Society

International

Design

Competition. Join a community that targets your discipline.

In our Technical Committees, you’re in good company.

www.computer.org/TCsignup/

Looking for a community targeted to your
area of expertise? IEEE Computer Society
Technical Committees explore a variety

of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

JOIN A
THINK
TANK

