
«abstract»
Widget

WidgetA WidgetB

«abstract»
Vidget

VidgetA VidgetB

CreateWidget()
CreateVidget()

«abstract»
AbstractFactory

CreateWidget()
CreateVidget()

ConcreteFactoryB

CreateWidget()
CreateVidget()

ConcreteFactoryA

Client

The Factory Pattern in API Design: A Usability Evaluation

Brian Ellis, Jeffrey Stylos, and Brad Myers
Carnegie Mellon University

firebird@cs.cmu.edu, jsstylos@cs.cmu.edu, bam@cs.cmu.edu

Abstract

The usability of software APIs is an important and in-
frequently researched topic. A user study comparing
the usability of the factory pattern and constructors in
API designs found highly significant results indicating
that factories are detrimental to API usability in sev-
eral varied situations. The results showed that users
require significantly more time (p = 0.005) to con-
struct an object with a factory than with a constructor
while performing both context-sensitive and context-
free tasks. These results suggest that the use of facto-
ries can and should be avoided in many cases where
other techniques, such as constructors or class clus-
ters, can be used instead.

1. Introduction

Whether creating a piece of desktop software, writ-
ing applications for handheld devices, or scripting the
Web, the use of application programming interfaces
(APIs) in modern software development is ubiquitous.
These APIs, also called software development kits
(SDKs) or libraries, are often large, complex, and
broad in scope, containing many hundreds or thou-
sands of classes and interfaces. A typical developer
may use only a small portion of the total functionality
of an API, but learning even that subset can be a daunt-
ing task for new programmers [1].

API designers must consider many different factors
when creating an API, such as class granularity, level
of abstraction, consistency with other APIs, etc. Re-
search has also shown that designing APIs carefully for
their intended audience improves usability [2]. To date,
usability studies of APIs have mostly considered the
usability of the API as a whole, providing minimal
guidance for future API designers. Little research has
examined the usability of specific design patterns and
programming paradigms as applied to API design.

In a previous paper, Stylos et al. [3] discussed the
usability of object constructors with required parame-
ters as compared to default constructors. Here, we

consider the usability implications of one of the best-
known object-oriented design patterns: the factory pat-
tern [4]. Our new study shows that creating objects
from factories used in APIs is significantly more time-
consuming than from constructors, regardless of con-
text or the level of experience of the programmer using
the API. The reasons for this, as well as a discussion of
specific stumbling blocks and possible alternative pat-
terns, are discussed below.

2. The Factory Pattern

The “factory pattern” refers to two distinct design
patterns, both first described by the “Gang of Four”
(Gamma, Helm, Johnson, and Vlissides) [4]. The “ab-
stract factory” pattern provides an interface with which
a client can obtain instances of classes conforming to a
particular interface or protocol without having to know
precisely what class they are obtaining. This has ad-
vantages for encapsulation and code reuse, since

Figure 1. The abstract factory pattern in UML

implementations can be modified without necessitating
any changes to client code. Factories can also be used
to closely manage the allocation and initialization
process, since a factory need not necessarily allocate a
new object each time it is asked for one. The abstract
factory pattern is usually implemented as shown in
Figure 1. To obtain a Widget instance, a programmer
would first obtain a reference to one of the hidden fac-
tory subclasses, usually through a factory method in
the abstract factory superclass, then use that reference
to create an object of the product type. In the example
shown, the code to do this might look like this:

AbstractFactory f =
 AbstractFactory.getDefault();
Widget w = f.createWidget();

The “factory method” pattern is related but simpler:

like the abstract factory pattern, the factory method
pattern allows a client to obtain objects of an unknown
class that implement a particular interface. Rather than
relying on a separate factory class to create instances of
the product classes, the product class itself has a fac-
tory method that returns an object that conforms to the
interface defined by that class. Typically, a class im-
plementing a factory method pattern would be an
abstract class with several concrete subclasses, and
would present a static method that could be called like
this:

Widget w = Widget.create();

This offers some of the same benefits as the ab-

stract factory (e.g., the ability to return objects of a
subclass type or objects that already exist) while still
maintaining an ease of implementation and locality of
reference that make it an attractive solution to many
problems. Strictly speaking, for instance, the standard
implementation of the singleton pattern [4] is a factory
method pattern. Factory method patterns are also often
used in an abstract factory implementation as an entry
point to the factory class hierarchy. For example, an
abstract factory superclass might define a getDefault
method that would return an appropriate concrete fac-
tory subclass.

2.1. Why Use a Factory Pattern?

Gamma, et al. describe in some detail both the
benefits and liabilities of the abstract factory and fac-
tory method pattern as they see them [4]. In terms of
benefits, the factory pattern enforces the dependency
inversion principle: the dependencies of the client are
solely to abstract classes and interfaces, and never to
the concrete subclasses they are passed. Second, it de-

couples the concrete factory and product instances
from everything but their point of instantiation. This
means, in the case of the abstract factory, that factories
can be swapped in and out simply by changing which
factory is instantiated, and without touching any other
code. Third, the factory pattern facilitates the creation
of consistent products (since they are presumably all
instantiated using the same factory).

Gamma, et al. [4] only mention one liability: the
difficulty of adding new types of products, due to the
need for a separate factory class (in the case of an ab-
stract factory) or a special case of the factory method.
Later publications, however, discuss another problem,
which stems, ironically, from one of the benefits de-
scribed above. The concrete factory and product
instances are decoupled from everything but their point
of instantiation. This is not merely an implementation
detail; it is a necessary consequence of the design of
most modern object-oriented programming languages,
which implicitly use a very strict constructor pattern
for object instantiation. Because the exact concrete
class of an object must be explicitly named in order for
it to be constructed, it is impossible not to have a con-
crete dependency on that name.

To avoid requiring the client to directly instantiate a
concrete factory subclass, the abstract factory must it-
self employ the factory method pattern to return a
polymorphically typed instance of one of its concrete
subclasses. (Theoretically, another class in the API
could contain the factory method instead, but in prac-
tice this is rarely the case.) This increases the complex-
ity of the code demonstrably, as we shall see later on,
and requires that the abstract factory superclass contain
concrete references to all of its subclasses.

Lastly, a true abstract factory implementation will
by necessity require developers to explicitly downcast
its product instances if they are to use any subclass-
specific functionality. If the abstract factory superclass
provides a creation method, subclasses must override
that method, including its return type. This means that
even if the subclass factory only ever returns objects of
a certain concrete class, the returned type will be of the
abstract product superclass. This does not pose a prob-
lem if the product subclasses are to be hidden from the
user, but in many real-life abstract factories (such as
Java’s SocketFactory discussed below) this is not the
case, and explicit downcasting is required.

2.2. Applications of the Factory Pattern

Many popular object-oriented APIs make use of
factory patterns. It is difficult to estimate the number of
factory method patterns in use, since any class may in
fact be implemented as a factory, and algorithmic

means of detecting them are non-trivial [5]. By con-
vention, however, factory classes often end with the
word “Factory” — using this simple metric, the Micro-
soft .NET API contains 13 classes (out of 2,686) that
definitely play roles in an abstract factory pattern;
these often come in pairs (ISecureFactory and Secure-
Factory, for example) where one is an abstract factory
interface and the other a single concrete factory im-
plementing that interface [6]. More prolifically, the
Java 1.5 SE API boasts some 61 factory classes and
interfaces (out of 3,279 total) [7]. These numbers defi-
nitely exclude many factories, however, especially in
Java: the DocumentBuilderFactory class, for example,
generates DocumentBuilders, which are themselves
factories used to generate Documents. .NET takes a
more monolithic approach to factories when they are
used; a single factory class can return a wide range of
different objects, whereas in Java there is typically a
strong mapping between product class and factory
class name.

In both .NET and Java, the abstract factory pattern
is used especially in the context of allocating shared
resources and objects managed by the operating sys-
tem: Java has factory classes for several kinds of
sockets, preferences objects, threads, and user interface
controls. .NET mirrors this focus, with database con-
nector factories, configuration and settings factories,
and a factory class devoted to security measures [6].
The wide adoption of the factory pattern in large, well-
known APIs such as these shows the importance of
studying the use of factory patterns in API designs.

2.3. Alternatives to the Factory Pattern

In simple cases, a constructor can often be directly
used in place of a factory. This obviates the need for a
hierarchy of factory or product classes. It also requires
programmers to refer directly to the concrete subclass
being constructed, however, and therefore cannot be
used when the designer wishes to hide the existence of
subclasses or eliminate concrete dependencies.

However, there are other patterns that have many of
the same benefits as the factory pattern and overcome
the usability problems. One such pattern is called the
class cluster [8]. Class clusters are designed for dy-
namically typed languages such as Smalltalk and
Objective-C, but can be adapted to languages like Java
by applying the handle-body idiom [9]. Like a factory,
the parent class depends directly upon its children, but
no special factory class is necessary. Instead, the “fac-
tory” is the “product.” From the perspective of the API
designer, writing a class cluster in Java is somewhat
more complex than writing a factory would be for the

same task. The interface presented to the programmer,
however, is much simpler.

A class cluster could be used to implement the ex-
ample shown in Figure 1: a Widget class that dynamic-
ally determines its behavior given some condition,
perhaps passed in as a constructor parameter. From
outside the class, the Widget object would appear the
same regardless of the condition. Internally, however,
the class might use that condition to determine what
private subclass to create, exactly as a factory would
do. The Widget class could be implemented as follows:

public class Widget {
 private Widget body;
 public Widget(boolean b) {
 if (b) {
 body = new WidgetA();
 } else {
 body = new WidgetB();
 }
 }
 public void performAction() {
 body.performAction();
 }
}
class WidgetA extends Widget {
 public WidgetA() { ... }
 public void performAction() { ... }
}
class WidgetB extends Widget {
 public WidgetB() { ... }
 public void performAction() { ... }
}

Many variations and improvements upon this basic
idea could easily be realized: using reflection to obvi-
ate the need for explicit method forwarding, for
example. In any event, the interface presented by the
Widget class is exactly the same as it would be if no
subclasses existed. Users can type:

Widget w = new Widget(true);

and get back a Widget conforming to the implementa-
tion for WidgetA. The Widget constructor could
perform whatever environment-specific checks the fac-
tory would otherwise perform.

The class cluster provides several of the same ad-
vantages over constructors that factories do, most
importantly the ability to hide private subclass imple-
mentations behind an abstract superclass. A class
cluster can also be used, like a factory, to avoid allocat-
ing a new subclass object each time one is requested
(in, for example, a socket pool). Although the super-
class instance is created using the “new” operator and
therefore allocates memory, the same is true of a fac-
tory class instance unless it is generated some other
way, such as by a factory method. Such an approach
could be used with a class cluster as well without re-
sorting to a factory class. Note also that when using

class clusters, there are no longer two parallel class hi-
erarchies, one of products and the other of factories,
which is another advantage over factories.

3. Related Work

The usability analysis of API designs is a relatively
new area. However, there have already been several
relevant explorations into the subject. Microsoft has
employed the “cognitive dimensions” framework [10]
to compare the usability of different API designs for
three “personas” representing different archetypes of
developers likely to use the API [11]. The results of
these comparisons are used to inform the design proc-
ess and improve the API.

Research has also been conducted into the role of
design patterns in general, and the abstract factory pat-
tern in particular, in computer science curricula [9].
This work shows that although educators consider the
factory pattern a superior method, they feel that it is
too difficult to explain to beginning students, and
therefore they avoid it in favor of others such as the
handle-body idiom.

Our study focuses on the usability of APIs that em-
ploy the factory pattern, while past research on
factories has mostly focused on the architectural ad-
vantages of the factory pattern for system
implementers. An earlier study [3] demonstrated that
user testing is an effective means of determining us-
ability properties of APIs such as discoverability and
adherence to user expectation. Here, we apply this ap-
proach to the use of the factory pattern, and a
companion paper [12] compares the usability of pa-
rameterized constructors with that of default
constructors.

4. Study design

In designing our study, we tried to minimize the
dimensions of variability to isolate inherent differences
in usability between API implementations that use
constructors compared to those that use the factory pat-
tern. We also presented the factory pattern in as many
contexts as possible to account for any bias toward or
against factories in one particular context (e.g., in net-
working) by participants who may have seen factories
in that context before.

A second goal was to maximize the external valid-
ity of our results by presenting factories and
constructors in at least one “real-world” use, in order to
better capture the complex interactions between the
means of construction of an object and the role that the
object plays in the user’s conceptual model of the API.

4.1. Methodology

We crafted a series of five Java programming tasks
to explore the use of the factory pattern in APIs. In or-
der to gain a broad understanding, each task was
constructed to differ from all the others along as many
dimensions as possible. The order of the tasks was ran-
domized as much as possible to minimize confounding
due to learning effects. All tasks except the first were
presented in the form of an Eclipse [13] project. Par-
ticipants were also given access to the Sun Java 1.5 SE
API documentation [7].

Participants were selected from a pool of applicants
generated using an advertising service for on-campus
experiments, postings to an on-campus bulletin board,
paper flyers posted around campus, and word-of-mouth
advertising. We used a pre-screening survey to elimi-
nate candidates from this pool that did not have at least
one year of Java experience. This resulted in a diverse
group of participants that included professional devel-
opers and software engineers, electrical and computer
engineers, and non-technical hobbyist programmers, as
well as computer science students. Twelve participants
were selected, with programming experience ranging
from one to twenty-two years. Eight had professional
programming experience, eight were students in a
computer- or electronics-related major, and two were
non-technical students. Six had at least some experi-
ence with the factory pattern, and four had
considerable experience with the factory pattern. All
participants were males between 18 and 35 years old.

Participants were randomly put into the factory or
constructor conditions for those tasks which had two
versions. Each participant was given written instruc-
tions for completing each task, and was asked to
verbalize his goals, assumptions, suppositions, and
strategies for completing the tasks using a think-aloud
protocol. Participants were told to complete each task
in the order it was presented, and not to move on to
subsequent tasks until the task was completed. When-
ever possible, tasks were designed so the subjects
knew when they had been successfully completed.

4.2. Measurement

A major goal of this study was to provide quantita-
tive measurements of the differences in usability
between factories and constructors. In the context of
APIs, where the goal is often to write correct code as
quickly and efficiently as possible, usability is highly
correlated with time to task completion, which also in-
cludes such activities as researching the
documentation. Due to large individual differences,
completion time is easiest to compare when measured

within subjects; hence, presenting both a factory and a
constructor was used instead of separate conditions in
two of the tasks.

We also administered a survey to each participant
after they completed the programming tasks to find out
about their programming background and familiarity
with design patterns.

4.3. Notepad Email Task

The Notepad email task was always the first task
administered. It differed from the other four tasks in
that, rather than using Eclipse, participants were pre-
sented with a blank plain-text document in the Notepad
text editor and asked to write Java code using whatever
real or imaginary APIs they wanted. This task was de-
signed to elicit the programmer’s expectation regarding
object creation.

Participants were asked to construct an email object
with a list of information including the sender and re-
cipient address, email body, and (most importantly)
whether the email was plain or rich text. The last pa-
rameter makes the task a candidate for the use of a
factory pattern by suggesting two subtypes of email
whose implementation might be hidden by a factory.

4.4. Eclipse Email Task

A second email-related task, administered as an
Eclipse project, used the same task description as the
Notepad email task: write a method that takes parame-
ters for an email and returns an Email object. This
time, however, participants were asked to use a simple
email API pre-built by the experimenters. The pre-
sented API created its emails using a factory rather
than constructors. Although the lack of a constructor
condition for this task precluded a direct comparison,
the task, coupled with the think-aloud process, was in-
tended to elucidate users’ reactions to finding a factory
when a constructor was expected.

4.5. Thingies Task

The “Thingies” task was designed to be an entirely
context-neutral task, with the intent of measuring user
expectation, preference, and responses to both factories
and constructors in the absence of any prior domain
knowledge. Participants were asked to create a
“Squark” and a “Flarn”, two subclasses of the abstract
“Thingy” class, and then call a simple run method on
each of them. The Squark was implemented as the
product of a (concrete) SquarkFactory, whereas the
Flarn was implemented as a simple concrete class with
a public default constructor.

4.6. PIUtils Task

We were interested in the usability of the factory
pattern while debugging, and not just when construct-
ing new objects. The “PIUtils” task consisted of a pre-
written method that was intended to display two dialog
boxes on screen, one which laid out its controls accord-
ing to the Windows user experience guidelines, the
other according to the Macintosh human interface
guidelines. A bug was introduced into the code that
caused both dialogs to lay out their controls as on
Windows, and participants were asked to find and fix
the bug. The bug was in fact due to a misinterpretation
of the role of a method in the PIDialogLayout class,
which was provided (with documentation, but without
source code) as part of the task.

The PIUtils task had two conditions, of which only
one was given to each participant. In the factory condi-
tion, the PIDialogLayout class was created by passing
parameters into the createLayout method of a layout
factory class. Here, the bug could be fixed by passing
different parameters to the factory. In the constructor
condition, the PIDialogLayout class was actually im-
plemented with a class cluster, and instances were
created directly using a default constructor. In this
condition, the bug could be fixed by calling the add-
OperatingSystem method with a different value.

4.7. Sockets Task

The Sockets task was designed to represent as real-
istic an experience as possible with a real-life factory
pattern from the Java API. Participants were instructed
to construct an SSLSocket and a MulticastSocket (de-
fined in the Java API), configure them to connect to a
particular server and port, and pass them into a method
that would perform the actual connection. The
SSLSocket class cannot be directly constructed, and
must instead be created by first obtaining a reference to
an SSLSocketFactory (which is itself a concrete sub-
class of the SocketFactory class — a textbook example
of an abstract factory pattern) and then calling a factory
method on it. The MulticastSocket, on the other hand,
is a concrete subclass of Socket and has several public
constructors.

5. Results

5. 1. Notepad Email

All twelve participants used a constructor call in
their implementation of the method. Three created
separate subclasses for each type of email (rich-text

and plain-text), whereas two passed the type of email
as a parameter, and seven used a setter method on an
already constructed object. None used, or reported that
they even considered using, a factory during the task.

5.2. Eclipse Email

Two out of twelve participants randomly were as-
signed to do the Eclipse Email last and did not have
sufficient time to begin it (so n = 10). Of those who
performed the task, seven participants attempted to use
a constructor, despite the lack of one in the documenta-
tion, before concluding that there was no public
constructor. Three of these participants then attempted
to create a concrete subclass of the abstract Email
class. All ten eventually found and successfully used
the factory, even though all of them had used a con-
structor call in their hypothetical implementation
during the Notepad Email task.

5.3. Thingies

Two participants did not have time to begin the
Thingies task (n = 10). All of those who reached the
task completed it successfully. The median time for
constructing a Squark (using a factory) was 7:10 (min-
utes:seconds, SD = 3:53). The median time for
constructing a Flarn (using a constructor) was 1:20 (SD
= 0:50). On average, participants spent 84.3% of their
time constructing objects during the Thingies task
working on Squark construction, as compared to
15.7% of the time working on the Flarn construction.

The time data were tested for normality, and al-
though deviations from normality were not significant
(p = 0.274 for Squark, p = 0.129 for Flarn), the data
were sufficiently skewed that we used the Wilcoxon
Signed Ranks test. Highly significant differences were
found between the time to complete the Squarks por-
tion of the task (using a factory) and the Flarns portion
of the task (using a constructor), with a Z-score of

-2.81 (p = 0.005). Figure 2 summarizes the times for
the Thingies and other timed tasks.

5.4. PIUtils

Due to the between-subjects nature of the PIUtils
task, it was evaluated using a one-way ANOVA. Of the
twelve participants, three had insufficient time to begin
the task (n = 9). All those who reached the task com-
pleted it successfully. Of those, three were in the
constructor condition, and six were in the factory con-
dition. (This disparity was the result of an unfortunate
coincidence; all three participants who did not have
time to perform the PIUtils task had been randomly
assigned to the constructor condition.) The mean time
to completion in the constructor condition was 26:40
(SD = 2:26), and 17:00 in the factory condition (SD =
10:26). Since the standard deviation of the factory con-
dition times was 4.2 times that of the constructor
condition times, a possible violation of the equal vari-
ance assumption was indicated. No significant
differences were found between the two conditions (F
= 2.35, p = 0.169).

While the data for this task do suggest a general
trend toward longer times for the constructor condition,
the lack of statistical significance and the very high
standard deviation of the factory condition make it dif-
ficult to say whether this is an artifact of the sample or
a real trend. This is consistent with the findings of pre-
vious studies, which have shown that debugging and
reading tasks are less apt to reflect significant differ-
ences in comprehension or efficiency than authoring
tasks [16]. Nevertheless, the question of the factory
pattern’s ease of debugging relative to constructors
might be an avenue for future work.

5.5. Sockets

To better understand participants’ behavior on the
Sockets task, an experimenter rated the completion of
the task into three subtasks: the SSLSocket, the Multi-
castSocket, and “other activities.”

The SSLSocket and MulticastSocket subtasks in-
cluded such activities as reading documentation in the
process of creating an object, writing the code to create
the object, and correcting syntax errors in the creation
code. Each subtask also encompassed activities related
specifically to one or the other socket object, but not
both. This included reading documentation relevant to
the object; adding, changing, or removing code in sup-
port of the constructed object; writing exception
handlers for a single subtask; and creating other objects
in support of the constructed object.

Figure 2. Time to Completion by Task

The “other activities” subtask included all activities
that were not directly related to one or the other sub-
task. This includes such activities as reading
documentation for and constructing an instance of sup-
plied helper classes, writing exception handlers
common to both tasks (such as wrapping the entire
method in an exception handler), and running the task.

The mean time to completion of the SSLSocket
subtask was 20:05 (SD = 11:17). The median time was
16:05. The mean time to completion of the Multicast-
Socket subtask was 9:31, with a standard deviation of
8:04 and a median time of 7:41.

We applied the Wilcoxon Signed Ranks test to this
task because the data showed significant floor effects.
All twelve participants started the Sockets task. Of
those, five participants were unable to complete the
task before the end of the study; these participants’ re-
sults were recorded using the total time spent rather
than the time to completion. All five failures resulted
from an inability to successfully construct an
SSLSocket and all had successfully completed all the
other parts of the task.

There were highly significant differences between
the time to perform the SSLSocket subtask (using a
factory) and the MulticastSocket subtask (using a con-
structor), with a Z-score of -2.803 (p = 0.005).

5.6. Threats to Validity

Although much care was taken to make the results
of the study as generalizable as possible, the selection
of such diverse tasks itself presents questions about the
validity of the data gathered. For instance, it is un-
likely that any reasonable developer would implement
an API as in the Thingies task using a factory, so the
results of that task can hardly be said to support the no-
tion that factories are worse than other patterns when
used for their intended purpose. Nonetheless, several
of the tasks (notably PIUtils and Sockets) either used
existing factory APIs or recreated APIs for which fac-
tories have been used in the past. We therefore feel
that the inapplicability of tasks like Thingies does not
detract from the validity of the results.

6. Discussion

The most striking result of our study is that facto-
ries are demonstrably more difficult than constructors
for programmers to use, regardless of context. Both the
Sockets results and the Thingies results show a highly
significant difference in the time needed to construct
an object using a factory vs. using a constructor. This
difference is especially meaningful because it implies
that it does not matter whether the factory is presented

in a vacuum or as the implementation for a particular
framework. All subjects found the constructor pattern
more “natural” [14], in that they expected that to be the
way to create objects, and that was the first technique
they tried.

Some patterns such as class clusters can perform
many of the same roles in an API as a factory without
the same usability costs. Since a class cluster appears
externally identical to a single concrete class, the com-
parison between factories and constructors discussed
here also holds true between factories and class clus-
ters. Since many of the benefits of factories can be
achieved by alternative solutions that do not incur the
same usability penalty, the results of this study suggest
that such alternatives are often preferable to factories.

6.1. Finding Factories

Every participant in the study attempted to use a de-
fault constructor for SSLSocket, whether or not they
had first looked at the documentation for that class.
Those who had, and had seen that the constructors
were protected, tried them anyway when no other
means of creating the object were apparent. Those who
had not yet read the documentation, and were engaging
in a more exploratory method of programming, fully
expected the constructor to succeed, and were puzzled
when it did not. Added confusion arose due to the par-
ticular error message from the Java compiler: because
the SSLSocket class is marked abstract, the error mes-
sage was “Cannot instantiate the type SSLSocket.”
This message caused participants to believe they had
failed to correctly import the SSLSocket class or had
introduced a syntax error in the class name. Indeed,
“cannot instantiate the type SSLSocket” was the single
most frequently heard comment from our participants,
as they repeated it aloud apparently struggling to make
sense of it. A more helpful and relevant error message
would have been something like “the constructor
SSLSocket() is protected”.

Indeed, participants experienced a strong bias to-
ward trying to find a public subclass of SSLSocket
rather than looking for ways of obtaining one indi-
rectly. This was due in part to the Java documentation:
the protected constructors for SSLSocket were all
listed in that class’s documentation, but the description
for each read “Used only by subclasses.” This phrase,
which was often repeated like a mantra by perplexed
participants, was universally understood to mean that
subclasses must either exist or that the users must cre-
ate one. One participant made this point explicitly
during the debriefing, mentioning, “‘Used only by sub-
classes’ makes you want to instantiate subclasses.
That’s really really confusing.” In fact, fully half of the

participants (six out of twelve) either expressed their
belief that subclassing would be necessary or actually
started implementing one before deciding that it would
be too much work and looking for another solution.

6.2. Using Factories

Even after discovering the factory, participants
were often unable to make immediate progress because
in a true abstract factory pattern, the factory itself is
also an abstract class. This resulted in much frustration,
as expressed by one participant while reading the
documentation for SSLSocketFactory: “‘Public ab-
stract class’. It extends SocketFactory. It’s an abstract
class. SSLSocket is an abstract class too. Why is it an
abstract class?”

After a close examination of the factory class, the
nine participants who finished the task eventually no-
ticed the static getDefault factory method that would
give them a factory instance. Clearing this hurdle was
not sufficient, however, because SSLSocketFactory’s
getDefault method had been overridden from the par-
ent factory class, SocketFactory. Since one cannot
change the stated return type of an overridden method,
the return value of the getDefault method was typed
not as an SSLSocketFactory, but as a SocketFactory.
Participants were often uncertain whether the instance
obtained from getDefault was actually an SSLSocket-
Factory at all, or might simply return generic sockets.
Several participants therefore decided that SocketFac-
tory must be a dead end and abandoned it to pursue
other possibilities. After discovering this property of
the SSLSocketFactory, one participant complained,
“So it seems like I can’t instantiate an SSLSocket. And
it won’t tell me who can.”

This was also a problem with the createSocket
methods, as only one createSocket method was defined
in the SSLSocketFactory subclass, and the ones inher-
ited from the superclass were barely mentioned in the
subclass’ documentation. This had two deleterious ef-
fects. First, participants were misled into thinking that
the only method they could use was the one explicitly
defined in SSLSocketFactory, which was in fact inap-
plicable to the situation. Second, the signature of the
correct method had to be retrieved from SocketFac-
tory’s documentation because only its name was listed
on the SSLSocketFactory page, right beside four iden-
tically named methods. One participant dryly
illustrated this point by reciting off the screen, “‘Meth-
ods inherited from SocketFactory: createSocket,
createSocket, createSocket, createSocket, cre-
ateSocket.’ Sigh.”

We were at first surprised that participants were so
quick to dismiss SSLSocketFactory, considering that

the documentation for SSLSocket explicitly states that
SSLSockets are created using SSLSocketFactories. We
quickly discovered, however, that the vast majority of
users never read that text. It was placed at the bottom
of a long class description, under several paragraphs
discussing cipher suites and large blocks of sample
code. Given the speed at which users scrolled past this
class description, it would have been impossible for
them to read any more than the first sentence of each
paragraph, and many clearly did not even read that
much. The lists of fields and methods were of much
greater interest, and so most participants’ first inkling
that something was amiss was the misleading “Used
only by subclasses” description for the constructors.
Only three participants appeared to actually read the
relevant sentence at all; the rest found the SSLSocket-
Factory class solely by its lexical proximity to
SSLSocket in the class list.

Since createSocket returned generic Socket objects
(which were, in fact, SSLSockets polymorphically
typed as their parent class), but the participants needed
to call methods specific to SSLSocket on these in-
stances, they were forced to explicitly downcast from
Socket to SSLSocket. This “leap of faith” severely
eroded participants’ confidence in the correctness of
their final solution, prompting one to remark, “I don’t
like doing this. It probably won’t work.” One partici-
pant responded to this requirement with disbelief and
said: “You should never have to typecast. If you write
programs that require you to typecast, you’ve either
done something wrong or you need to support covari-
ant typing.” Another had some words for the folks at
Sun, which we shall pass along here: “It’s counterintui-
tive where you have to downcast to something. It’s
really bad. You should write to the Java people; you
should say in your paper, ‘get rid of it.’”

These problems with the factory pattern are not lim-
ited to the particular implementation in the Sockets
task. Indeed, we found similar problems for all designs
that used factories. While better documentation would
help in the Sockets and Thingies tasks, no amount of
documentation would alleviate the puzzlement of users
trying to obtain an instance of an abstract class with no
known subclasses, nor would documentation remove
the need for explicit downcasting (which, as we have
seen, is an inherent drawback of abstract factories not
shared by alternatives such as class clusters). Adding
explicit support for factories into the language or de-
velopment environment could improve the experience
of a user deciphering misleading error messages or try-
ing in vain to find an entry point, but the level of
complexity alone was frequently overwhelming in its
own right. One participant summarized their experi-
ence with the abstract factory pattern with impressive
clarity: “I’m trying to figure out how to use these fac-

tories. It seems like there’s a whole lot of abstract stuff
floating around, and I’m not going to be able to actu-
ally instantiate anything that I need. In fact, I forgot
how I even got here.”

Constructors, conversely, posed no problems for
any participant in either the Sockets or Thingies task.
The most common comment about creating a Flarn
was “oh, that should be easy.” Participants expressed
similar relief in the Sockets task upon seeing that Mul-
ticastSocket has constructors; one participant said, “oh
good, I can just create one” — implying that obtaining
one from a factory was something fundamentally more
complex than “just creating one.”

We also noticed a tendency on the part of certain
participants, especially those who claimed to have rela-
tively little programming experience, to treat factory
methods as if they were constructors. Five participants
were observed calling factory methods and ignoring
the return value; all but one eventually added an as-
signment to the product type. That participant,
however, instead called the factory method and then
typecast the factory to the product type, as if the fac-
tory method had somehow acted as a constructor post
facto and transformed the factory into the product.

6.3. Debriefing

In the debriefing survey following the last of the
tasks, we showed participants two pieces of sample
code. Both samples performed the same simple task:
adding a border to a panel using Swing. One sample
used a BorderFactory, while the other directly con-
structed the appropriate type of border. We proceeded
to ask each participant which approach they felt was
“better.” We found that participants often voted in fa-
vor of the factory pattern, including those participants
who had struggled most bitterly with the SSLSocket
class. Of the twelve participants, six felt the factory
sample was better, whereas five decided in favor of
constructors (the twelfth participant’s choice was not
clear).

The reasons for this, as given by participants, fell
into two categories. The first, given by two of those
who preferred factories, was the perception that facto-
ries hide complexity behind a simple, consistent
exterior. Participants felt that “opaque” objects — that
is, objects which would be instantiated, passed to an-
other class, and then discarded without being mutated
or having methods called on them — should be re-
turned by factories, whereas objects upon whose
functionality their code directly depended should be
constructed.

The other four participants who preferred factories
had a different sort of reasoning behind their prefer-

ence. Their responses all shared the sense that the
developers who designed the APIs must be far more
knowledgeable and experienced than they, and there-
fore any decision made by the API designers must be
the better one; factories only appeared more difficult,
they reasoned, as a result of some failure on their own
part to understand. This reasoning is well summarized
by the following comment: “I think that [the construc-
tor example] is easier to understand, and therefore I
like it better. However [the factory example] is proba-
bly better since it uses a factory and it appears that
factories are probably useful in some way.” We found
no strong relationship between this sort of response
and a lack of familiarity with the factory pattern, and
neither was this response limited to those with little
programming experience; a participant who indicated
he had learned about factories extensively in his
coursework said, “I like [the factory example] better. I
can’t quite recall all the benefits of using [the] factory
pattern, but I guess from all the training and previous
programming experiences I just feel safer and more in
control using factories.” This individual had struggled
just as much with the Sockets task as the other partici-
pants.

The seeming contradiction between what some us-
ers preferred and what they were best able to use is a
common result in human-computer interaction re-
search. Users often cannot identify the solution that is
best for them when presented with an explicit choice
[16]. For users experienced with the factory pattern,
the supposed superiority of the factory was backed up
by their formal coursework and it therefore felt “safer.”
For less experienced users, the very complexity of the
factory may have been an appealing feature, as they
may have interpreted the complexity of the design as
evidence of advanced underlying ideas — a program-
mer capable of designing and understanding such
complexity must be knowledgeable and experienced,
the reasoning might go, and therefore is more likely to
know best what is good and bad. However, we feel that
our results show significant negative impacts on pro-
grammers’ real ability to use APIs.

7. Future Work

We have focused in this paper on the use of APIs.
Future research should explore the similarities and dif-
ferences between class clusters and factories from the
API developer’s point of view as well. If class clusters
proved to be both easier to use and equally suited to the
role currently played by the factory pattern, this could
potentially spur a widespread adoption of alternatives
to factories in future API designs.

Research could also further examine the relative
ease of debugging objects created using factories as
opposed to constructors. Additional dimensions could
be considered, such as perhaps making a distinction
between compile errors and runtime errors, and a larger
sample could be gathered.

There are several other design patterns in common
use in APIs that should be studied, most notably the
singleton pattern, the observer pattern, and the com-
mand pattern. Future studies could examine the
usability of these patterns, either independently or rela-
tive to some alternative design. Research could also be
conducted into other common API metaphors such as
event handlers, threading models, etc., and their impli-
cations for API usability.

Finally, further explorations could be made into
reconciling the need for an API that matches the devel-
oper’s expectations with the need for an API that
conforms to the usability guidelines suggested by the
cognitive dimensions framework [10][11].

8. Conclusions

Our study finds that the factory pattern erodes the
usability of APIs in which it is used. There are alterna-
tives with better usability, such as class clusters, which
can be used in many situations in which a factory
might normally be used. Since the factory pattern is
quite popular with today’s API designers, it is impor-
tant to investigate tradeoffs from the designer’s point
of view. However, there are thousands of times more
people using APIs than designing APIs, so designs that
degrade API users’ productivity should be avoided.
Hopefully, there will be many more studies of the im-
pact of API features on programmer productivity,
which can guide future API designs.

9. Acknowledgements

We would like to thank Andrew Ko and Justin
Weisz for their valuable help with this paper. This
work was funded in part by the National Science
Foundation, under NSF grant IIS-0329090, and as part
of the EUSES consortium (End Users Shaping Effec-
tive Software) under NSF grant ITR CCR-0324770.
Any opinions, findings and conclusions or recommen-
dations expressed in this material are those of the
authors and do not necessarily reflect those of the Na-
tional Science Foundation.

10. References

[1] A. J. Ko, B. A. Myers, and H. Aung, “Six Learning Bar-
riers in End-User Programming Systems”, IEEE

Symposium on Visual Languages and Human-Centric
Computing, Rome, Italy, Sep 26-29, 2004, 199-206.

[2] S. Clarke, “Measuring API usability”, Dr. Dobb’s Jour-
nal Windows/.NET Supplement, May 2004, pp. S6-S9.

[3] J. Stylos, S. Clarke, and B. A. Myers, “Comparing API
Design Choices with Usability Studies: A Case Study and
Future Directions”, PPIG 2006.

[4] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[5] G. Florijn, M. Meijers, and P. van Winsen, “Tool Support
for Object-Oriented Patterns”, Proceedings, ECOOP ‘97,
Springer-Verlag, 1997, pp. 472-495.

[6] “.NET Framework Class Library”, http://msdn2.mi-
crosoft.com/en-us/library/ms229335.aspx

[7] “Java 2 Platform Standard Edition 5.0 API Specifica-
tion”, http://java.sun.com/j2se/1.5.0/docs/api/index.html

[8] “Cocoa Fundamentals Guide: Class Clusters”,
http://developer.apple.com/documentation/Cocoa/Conceptual/C
ocoaFundamentals/CocoaObjects/chapter_3_section_9.html

[9] O. Astrachan, G. Mitchener, G. Berry, and L. Cox, “De-
sign patterns: an essential component of CS curricula”,
SIGCSE Bull. 30, 1, Mar. 1998, pp. 153-160.

[10] T.R.G. Green and M. Petre, “Usability Analysis of Vis-
ual Programming Environments: A ‘Cognitive Dimensions’
Framework.” Journal of Visual Languages and Computing,
1996. 7(2): pp. 131-174.

[11] S. Clarke, “API Usability and the Cognitive Dimensions
Framework”, 2003,
http://blogs.msdn.com/stevencl/archive/2003/10/08/57040.aspx,

[12] J. Stylos, S. Clarke, “Usability Implications of Requir-
ing Parameters in Objects’ Constructors”, to appear in ICSE
‘07.

[13] “The Eclipse Project”, http://www.eclipse.org

[14] B.A. Myers, J.F. Pane, and A. Ko, “Natural Program-
ming Languages and Environments.” CACM, Sept, 2004.
47(9): pp. 47-52..

[15] F. Modugno, A.T. Corbett, and B.A. Myers, "Evaluating
Program Representation in a Demonstrational Visual Shell,"
in Empirical Studies of Programmers: Sixth Workshop, 1996,
Ablex Publishing Corporation, pp. 131-146.

[16] J. Nielsen, Usability Engineering, AP Professional,
1993.

