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Abstract 
In this article we have classified computational creativity 
research activities into three generations. Although the 
respective system developers were not necessarily targeting 
their research for computational creativity, we consider their 
works as contribution to this emerging field. Possibly, the 
first recognition of the implication of intelligent systems 
toward the creativity came with an AAAI Spring 
Symposium on AI and Creativity (Dartnall and Kim, 1993). 
We have here tried to chart the progress of the field by 
describing some sample projects. Our hope is that this 
article will provide some direction to the interested 
researchers and help creating a vision for the community. 

1. Introduction   
One of the meanings of the word “create” is “to produce by 
imaginative skill” and that of the word “creativity” is “the 
ability to create,’ according to the Webster Dictionary. 
However, the intriguing act of human creativity has meant 
different things to different communities of scholars in 
different fields. Also, its relationship with “innovation” 
and otherwise general “intelligent activities” is not very 
crisp.   
 Over last half a century computer scientists seems to 
have used a shallow working understanding for creativity 
in order to develop computational tools that engage in 
creative activities, as perceived by the community at that 
point in history. We will divide these types of researches in 
three genres. The classification is not necessarily 
chronological but has some temporal insinuation and so, 
we call them as generations. The list of the works that we 
will discuss is not exhaustive. The purpose of this article is 
not to provide a survey of the area. Rather, we will choose 
some sample works as examples for each generation. 
Lastly, we will discuss the works outside the scope of 
computational creativity and some recent developments 
that may have strong bearings to the discipline. 
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2. Philosophical Angles 
Philosophers try to understand creativity from the 
historical perspectives – how different acts of creativity 
(primarily in science) might have happened. Historical 
investigation of the process involved in scientific discovery 
relied heavily on philosophical viewpoints. Within 
philosophy there is an ongoing old debate regarding 
whether the process of scientific discovery has a normative 
basis. Within the computing community this question 
transpires in asking if analyzing and computationally 
emulating creativity is feasible or not. In order to answer 
this question artificial intelligence (AI) researchers have 
tried to develop computing systems to mimic scientific 
discovery processes (e.g., BACON, KEKADA, etc. that we 
will discuss), almost since the beginning of the inception of 
the former field (AI). Scientific historical data and 
philosophical perspectives are often input or embedded 
within such systems.  
 Two conflicting views about how science is (or should 
be) conducted comes from Francis  
Bacon(http://en.wikipedia.org/wiki/Francis_Bacon) and 
Rene Descartes (http://en.wikipedia.org/ 
wiki/Ren%C3%A9_Descartes, both of them worked in the 
seventeenth century) within the context of modern Western 
Science. The former proposed a methodology based on 
observation, meticulous data collection and analysis, 
generalization from data with inductive reasoning. 
Descartes is a proponent of epistemological method based 
on pure deductive reasoning. The basis of these two 
contradictory approaches lies deep within the Greek 
philosophy. Locke (Locke, 1690) connected these two 
views by some putative analyses on how mind reasons 
with observations. However, modern scientists, since the 
days of Galileo, never took up one of these extreme 
positions or the other. Rather, the approach was always 
based on controlled experiments for data gathering 
whenever that is feasible. Theoretical science always 
revolved around laboratory science, and the importance of 
theory is never underestimated. A general philosophical 
underpinning of this dual approach was most noticeably 
provided by Karl Popper (1934), when he defined science 
as targeted toward falsification of hypotheses. Popper 



argued that a hypothesis cannot be verified inductively but 
falsified conclusively through experiments or observation. 
Thomas Kuhn (1962) subsequently contradicted this view 
of Popper in his seminal work on the sociological aspects 
of science. However, it seems targeting the statistical 
significance of a null hypothesis forms the basis of most 
contemporary empirical activities. Kuhn divided science 
into evolutionary or paradigmatic stage, and revolutionary 
stage when a paradigm gets replaced by another one, e.g. 
Newtonian mechanics by quantum mechanics. Kuhn’s 
influence on attempts to understand and enhance human 
creativity cannot be understated. Current emphasis on 
providing appropriate social and group environment for 
creativity and invention is almost a dogma to the point that 
individual aspects of creativity is viewed with suspicion by 
many.  
 Psychologists almost avoided the issue of human 
creativity, except for some researchers who tried to 
understand the condition of mind that engages in creative 
activities (Csikszentmihalyi, 1996). Others tried to study 
the personalities of so called creative individuals. A recent 
trend is to study on how to improve individual creativity 
(Epstein, 1996) from a pragmatic view. Neurobiological 
study on the process of intellectual creation is often linked 
to the gross psychological behavior of creative individuals 
under observation 
(http://ideaflow.corante.com/archives/brain_chemistry_cre
ativity/). Although these works do not seem to relate 
directly to automated creative activity, computational 
creativity researchers will ignore them to their peril.  

3. First Generation 
Samples of first generation tools that dazzled the 
community with their “creative” capabilities are the early 
artificial intelligence (AI) tools, like the game programs, 
the theorem-provers, and the expert systems. Trying to 
empirically prove that computers can be creative, these 
early AI researchers took up the contemporary challenges. 
One of the earliest such systems is the Logic Theorist (LT) 
written by Allen Newell, J.C. Shaw and Herbert Simon in 
1956  
(http://www.aaai.org/AITopics/bbhist.html). The same 
group developed the General Problem Solver around the 
same time primarily for theorem proving. In 1958 
Gelernter and Rochester extended such theorem provers 
for geometry that did diagrammatic reasoning. Samuel at 
IBM developed the first game-playing program for 
checkers over the fifties that achieved sufficient skill to 
challenge a world champion. Interestingly, this is also the 
first program that can learn from experience and improve 
its skills. Feigenbaum, Lederberg, Buchanan, Sutherland 
demonstrated in 1967 with their Dendral program that 
computers can do sophisticated scientific reasoning based 
on precompiled knowledge. This is the first expert system 
and it interpreted mass spectra of organic chemical 
compounds. Although these programs impressed lay 
persons with the creative power of mechanistic computing, 

they cease to be considered as “creative enough” by the 
researchers as they generalized their experience and found 
some common algorithmic notions behind these programs 
that appeared not so novel after all.  
 These first generation creative systems were almost 
based on Descartesian principle of pure reasoning as 
opposed to Baconian learning from observation. They had 
elucidated three computing problems: (1) Blind search is 
not enough and faster search mechanisms are keys to the 
development of such smart systems. (2) There are general 
purpose (weak) heuristics and domain specific (strong) 
heuristics that improve the search. (3) Pure reasoning is not 
enough and availability of knowledge and the capability to 
learn are needed. These experiences ushered a new era in 
computational creativity as scientists took up different 
types of problems to prove the same hypothesis that 
computers can be creative.  

4. Second Generation 
Armed with the experience gained from the first generation 
of creative systems, two groups of researchers went into 
two directions. One group attempted to broaden the scope 
of the first generation systems. Meta-Dendral (Lidsay et 
al., 1980) adds learning capability to Dendral that improves 
with experience. Results from Meta-Dendral were 
publication worthy in scientific literature. Some groups 
used their program’s weak heuristics and created shells that 
can address other domains than the original one (e.g., 
EMYCIN shell as an empty-MYCIN program developed 
out of MYCIN for medical diagnosis). Although this 
direction of works initiated the technology of expert 
Systems that resulted in development of many commercial 
intelligent systems, it did not contribute much toward 
computational creativity. 
 The other direction took up the challenge of developing 
systems for problems more related to creativity. Doug 
Lenat’s (1984) AM program proposed theorems and 
conjectures in number theory starting with some axiomatic 
notions on set theory, and a bag of “common sense” rules 
(http://www.cyberconf.org/~cynbe/muq/muf3_21.html). 
Lenat’s program also showed how younger mathematicians 
without much experience could contribute so much in the 
field, which is a known fact about mathematical research. 
Many of the second generation automated creative 
software led to much broader projects. For instance, 
Lenat’s faith in common sense knowledge behind any 
higher level creative activity led him to develop the CYC 
project (Guha and Lenat, 1991), which is still continuing.  
 Cheeseman et al. (1996) developed the AutoClass 
program that classified astronomy data from sky-survey in 
unsupervised mode. It identified interesting astronomical 
objects, even discovered galaxies with distinct color 
distribution even though the input data did not include 
color information. This program ushered a new era of 
Datamining which found a niche application in the 
business world. In contrast to Descartesian pure reasoning-
based paradigm this is also a venture into Baconian pure 



observation-based science. The discovery and the “aha” or 
“Eureka” comes by careful abstraction process over data 
(as Kepler did in finding laws of planetary motion from 
Tycho Brahe’s data, as opposed to Archimedes’ 
discovering density measurement technique by pure 
reasoning).  
 A conscious Baconian approach was taken by Langley’s 
group (Bradshaw et al, 1987) in developing the program 
Bacon. Bacon derived algebraic formulas describing the 
relations between data. A small amount of supervision is 
needed in defining the variables over which the relation is 
to be discovered. Powerful weak heuristics are used in the 
program. It discovered Plank’s law of black-body 
radiation, Boyel’s law of gas, Kepler’s laws of planetary 
motion, etc. Bacon, like AutoClass has no knowledge 
about science and works almost exclusively within the data 
space. Some additional knowledge could have made Bacon 
capable of suggesting new experiments (for missing or 
inconclusive data), or deriving additional theoretical results 
(e.g., postulating quantization of energy after deriving 
Plank’s law). Domain specific knowledge can also reduce 
search space as observed from the first generation of tools.  
 The next system that we have picked up for our study 
within this generation is the Kekada developed by Kulkarni 
and Simon (1988). It was primarily targeted toward 
emulating Hans Kerb’s discovery process of urea 
synthesis. Kekada suggested experiments, analyzed their 
results and gradually led to the discovery. It considered 
some primitive sociological factors like the expertise of the 
involved scientist, availability of resources, which 
constitute a great constraint on the discovery process.  
 Kekada was based on Simon and Lea’s (1984) two space 
cognition model: rule space and instance space, with 
heuristics for both of these spaces. Heuristics are for 
experiment proposing, hypothesis proposing, problem 
generation, expectation setting, etc. Qualitative abstracted 
information from the experiments needed to be entered 
interactively. If the result violated the expectation bounds 
for an experiment, then a “surprise” occurred, and 
resolving the issue got priority. Thus, it emulated the 
important psychological aspect of human curiosity. Kekada 
combined the deductive reasoning with inductive data 
abstraction that is the common methodology of modern 
science. The prospect of Kekada was nicely described by 
Kulkarni and Simon, “This was viewed, in turn, as a first 
step toward characterizing the heuristics used by scientists 
for planning and guiding their experimental work.” 
Although Kekada was a strongly domain specific software, 
Kekada-like tools could be wonderful aids for the 
experimental scientists.  
 In contrast to the models of individual discoveries in the 
previously described work, Taggard and Nowak tried to 
experiment with the sociological angle of the creative 
process in science in the Kuhnian sense. They emulated the 
“plate tectonics” revolution in geology as a paradigm shift. 
The acceptance of the fact that plates move on earth 
surface is considered as a revolutionary phenomenon in 
geology. Their program ECHO was built upon some 

underlying theses: (1) If scientific knowledge is 
represented with propositional and conceptual network, 
then a scientific revolution involves major transformation 
in the network. (2) Links in the network are mainly kind-of 
and part-of types. (3) New theoretical concepts normally 
arise by mechanisms of conceptual combination. (4) The 
network is primarily structured from the perspective of 
explanatory coherence. (5) Hypotheses are generated by 
abduction. (6) Transition to a new conceptual network (or 
scientific revolution in Kuhnian sense) happens because of 
a better explanatory coherence. Individual scientists are 
implicit overlapping pieces in this network, they do not 
appear in the model, and the creative process takes place 
over the whole community. 

5. Third Generation 
The second generation automated creativity tools were 
experimental in nature. Each was more geared toward 
proving a case. In contrast, the third generation tool 
developers are bolder in their approach. Armed with 
matured algorithmic techniques (Kakobas, 1993), they 
target their tools to produce practically useful results  
 Valdes-Perez’ group at Carnegie Mellon University 
developed the PAULI system for elementary particle 
physics research. With significant amount of knowledge on 
particle physics embedded within the system, it primarily 
reasons on the conservation of different quantum 
parameters (e.g., charge, Baryon number, etc.) over the 
particle interactions (Valdes-Perez, 1994). The input to the 
system is a high level of information abstracted from the 
experimental data. Some of its results were published in 
Physics journals. 
 John Koza’s group at Stanford University has applied 
Genetic Programming for invention in many disciplines 
(Koza et al., 1999). The list is too long to mention. Some 
of the notable ones are in circuit design, optical lens 
design, economic modeling, antenna design, discovery of 
protein motifs, and reverse engineering of metabolic 
pathways. A common technique behind all these different 
applications is to parameterize the topology of the 
underlying knowledge structure and then letting the genetic 
program to modify it (Koza et al., 2003). Some of the 
designs have had previous patents, or have patent-pending 
status (first time, in the name of a Software rather than that 
of a human inventor).  
 Gero and Kazakov (1996) used a very similar technique 
of genetic engineering for computer aided design. Only 
subtle difference between this approach and that of Koza’s 
group seems to be in the way the underlying knowledge is 
represented. Gero (now at George Mason University) and 
Kazakov used a more formal logical KR technique with 
somewhat qualitative knowledge-base. The success of the 
evolutionary programming approach behind both of these 
groups’ works suggest that creativity may need some boost 
from the random number generator in order to get out of 
local optima, or in other words, to get out of a conventional 
thinking pattern! 



 Doug Lenat’s faith in the importance of common sense 
knowledge led to the CYC project (Lenat and Guha, 1990). 
CYC is an encyclopedic knowledge-base of gigantic 
proportion. The group developed its own logic-based 
knowledge representation technique and hand coded 
knowledge aided by interactive queries from the system. 
An expectation behind developing the system is that added 
with domain specific expert knowledge it will be able to be 
creative. The group has formed a commercial venture 
called Cycorp, Inc. (http://www.cyc.com/), and some free 
versions of the software are released both for commercial 
and research communities. To the best of our knowledge, 
no new creativity-related results have been reported in the 
literature yet.  

6. And Beyond 
On the periphery of automated creativity some computer 
scientists and epistemologists are always challenged by 
developing mechanisms for aiding human creativity. It is 
difficult to discern between productivity tools (e.g., 
spreadsheet or CAD tools) and creativity tools. However, 
some of such systems’ contributions toward helping 
creative activities are undeniable. For instance, a tool to 
“visualize” music with the wave-forms and colors that 
actually help musicians to create new music is a creativity 
tool (see sidebar by Linda Candy in Shneiderman, 2007). 
 In a recent article Ben Shneiderman (2007) has 
described three schools of thoughts on what is needed for 
human creativity. (1) Structured approach, where meta-
level knowledge clearly tells how to produce new concepts 
or design from existing information. (2) Inspirational 
approach, where right ambience needs to be provided for 
creativity. Archimedes’ bath-tub or Newton’s falling apple 
could be examples of such ambience where the creator is 
“inspired” to think out of the box. (3) Social approach, 
where communication with individuals working on the 
same problem provide complementary knowledge. 
Shneiderman discusses these three approaches in the 
context of developing creativity tools. Such a tool may 
provide appropriate structure, or right ambience, or help in 
dynamically communicating with a group knowledge-base. 
 One of the examples of structured approaches is TRIZ 
(1997). Although anyone is yet to develop any software 
based on TRIZ, it is a generic scheme (almost algorithmic) 
for designing new product or concept from existing ones. It 
provides a finite set of rules on what to look for the 
purpose of making appropriate modifications. In some 
sense it is like the evolutionary programming approach of 
Koza’s group or Gero’s group (described in the last 
section), where the objective functions would be based on 
TRIZ’ structured suggestions. However, TRIZ does not 
provide a quantitative way of measuring the improvement 
and cannot get out of any local optima over the design 
space. One of the criticisms against TRIZ is that so far it 
produced inventions of only incremental nature.  
 Some researchers work on a much broader scale to 
improve human creativity in general.  Janet Kolodner 

(2002) at Georgia Tech attempts to help creative activities 
amongst children. Her Learning By Design™ facilitates 
students in learning and applying concepts in science by 
going through iterative goal-oriented cycles of 
design/redesign and investigate/explore in a group setting. 
Case-based reasoning software helps in this facilitating 
process.  
 On a similar vein, Bruce Porter’s group at University of 
Texas at Austin developed the AURA knowledge 
representation system that is being adapted by SRI and 
Vulcan, Inc., in their HALO project (Chaudhri et al., 
2007).  AURA is primarily an ontology system. SRI group 
has used it to develop a knowledge-base for a selected 
section of school physics. It can interactively help students 
to solve related physics problems. Their tool shows a 
strong promise in aiding creative activities in science. A 
broader knowledge-base can provide help in physicists 
solving unknown problems interactively.  For the purpose 
of participating in creative activity it has to be more 
dynamic and be ready to modify the structure of 
knowledge than what an ontological system can provide 
(personal discussion with Mary-Lou Maher). 
 In this article we are primarily concerned with 
automated creativity that relates to science. Computational 
creativity is a thriving topic in arts and music (Computer 
Music journal is an example of such a community, see 
http://204.151.38.11/cmj/). However, some recent 
developments within the Computer Games cannot be 
ignored even from a study on creativity in science.  
 Game designers have to embed some amount of physics 
in their software. Primarily for the sake of faster 
processing, but secondarily for the sake of providing 
alternative reality to the users, they often tweak with the 
laws of nature in their programs. This has developed into a 
whole sub-discipline called Game Physics (Eberly, 2004), 
and vendors have emerged to provide independent game 
physics software modules and independent processors. 
Imagination is always behind the power of creativity and 
the game designers embed such imaginative alternative 
physics in their software. Although in most of such 
software the underlying physics is hard (procedurally) 
coded, sometimes they even provide their users to create 
alternative reality, as in Second Life. Experiences gained 
from developing and using such software someday may 
provide the background for generating a whole set of 
creativity tools targeted toward science.  

7. Conclusion  
In this article we tried to map research works on intelligent 
systems (or on its periphery) that are related to 
computational creativity. Our focus was primarily on the 
scientific or engineering domain, because such a domain 
provides rich repertoire of creativity activities. Also, the 
benefit to computer science in interacting with natural 
science is a well established fact. The samples picked up 
here are more to show the thematic progress of such 
research rather than to provide a broad review. We have 



loosely classified computational creativity research into 
three generations. We have also provided some 
philosophical underpinnings of the scientific discovery 
process in this article. 
 The first generation tools are the early AI systems, 
which were primarily to demonstrate that some intelligent 
activities are quite algorithmic. However, researchers soon 
realized that the key challenge lie in controlling the search 
space and in finding domain related heuristics. Importance 
of representing knowledge was also elucidated in this 
stage. The second generation tools were developed to 
prove that computers can be actually creative. 
Psychological and social angles of such creative activities 
were deliberately modeled. The potential that these 
projects created can hardly be understated. However, the 
direct focus on modeling a creative act in science was not 
followed in the subsequent generation. In fact the activities 
on computational creativity in third generation do not seem 
to be as extensive as that in the second generation. The 
momentum seems to have subsided. However, what we 
classify as third generation systems are far more matured 
and are targeted toward broad ranges of practical problems 
rather than to prove any small set of hypotheses, as the 
second generation tools were. The primary purpose of 
these projects is also to demonstrate the prowess of the 
underlying methodologies, not so much to contribute in 
understanding the creative process. In the US, a recent 
thrust from the National Science Foundation with their 
CreativeIT initiative raises some hope to revive the field. 
The initiative followed a series of workshops (Nakakoji, 
2005) sponsored by NSF that provided some guidelines for 
computational creativity research.  
 Lastly, we have presented here some samples on the 
creativity support projects. Possibly the future of research 
on computational creativity lies in this direction that is of 
so much interest to the society currently.  
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